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Recent developments in commercial off-the-shelf flight controllers have paved the way for
designing various Ground Control Stations (GCSs). However, these lack flight dynamics
control integration. Integrating flight dynamics is necessary to incorporate correct
aerodynamics and performance data for effective flight. This article presents a GCS
application that enables sustained performance with various COTS controllers. AeroQT
is a lightweight Qt framework-based application capable of executing software-in-the-loop
and hardware-in-the-loop (HITL) simulations, along with real-flight testing for any aircraft,
by integrating MAVLink messages in the same runtime application in which JSBSim and
other custom features, such as autopilot modes, obstacle avoidance, and adaptive control
(among others), are executed. In this approach, the MAVLink implementation was written
in C++ using the MAVLink v2 C++ library for the transmission of sensor and actuator data
between AeroQT and Pixhawk. In HITL mode, JSBSim (an open-source flight dynamics
modeller) computes the desired actuator response, and MAVLink sends these actuator
messages to PX4. With access to both real-time (Via MAVLink) and simulation sensor data
(Via JSBSim UDP), AeroQT acts as a comprehensive test bench application for MAVLink-
based flight controllers.
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INTRODUCTION

In recent years, flight and autopilot testing algorithms have improved significantly with the advent of
modern tools such asMATLAB [1], with which a Flight Dynamics Model (FDM) can be designed for
a specific aircraft. There are several other simulation platforms, such as the Robot Operating System
(ROS), Microsoft Flight Simulator, and Simulink toolboxes, for crafting FDMs. ROS and MATLAB
have long been used professionally as a means of providing high-fidelity simulations in the field of
robotics and aviation because they have extensive modelling tools and libraries available, and their
ability to design Graphical User Interfaces (GUIs) makes these two frameworks an equitable choice
for aircraft simulations. MATLAB can also be equipped with an open-source flight visualisation tool,
i.e., FlightGear, via a Universal Data Protocol (UDP) connection, eliminating the need to build a
separate Graphical User Interface (GUI) [1]. Recently, MAVLink was added to MATLAB as part of
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the Unmanned Aerial Vehicle (UAV) toolbox to aid in
communication with MAVLink-based flight controllers.
Similarly, MAVROS, a package provided in ROS, is a
communication driver for messages between ROS nodes and
PX4. It is also capable of message forwarding, which is used when
a flight controller is connected to a companion board or to
communicate with other flight controllers in a swarm-based
application. However, MATLAB/Simulink suffers from poor
performance and requires high computational power to
visualise effective results.

A similar open-source 6-Degree-of-Freedom (DoF) FDM,
JSBSim, is being utilised in the aerospace industry for the
purpose of conducting Hardware-in-The-Loop (HITL) and
Software-in-The-Loop (SITL) simulations, as it is capable of
simulating a variety of aircraft configured in XML format [2]. As
it is written in C++, it has become convenient for engineers to
use its Standard Template Library (STL), a library of containers
such as vector classes that act as arrays and can be called upon,
including the FDMExec header file. JSBSim has proved to be a
better-performing tool for flight testing because of its ability to
execute several standalone instances simultaneously. As an
open-source project, it has many contributors and developers
who are continuously optimising it for efficient real-time
simulations.

Zonggang Zhang et al. [3] developed a HITL platform by
integrating PX4 with RPi 4, which was used for autopilot
algorithms, swarm capability and communication between
controllers. Although QGround Control (QGC) is capable of
conducting HITL simulations, this approach had to utilise a
companion board due to the limited availability of autopilot
modes in the Ground Control Station (GCS) (e.g., QGC).
Recently developed software, jMAVSim, accelerates the
simulations with MAVLink-based flight controllers and provides
a GUI interface for the visualisation of the JSBSim FDM. It can also
forward messages from PX4 to GCS via the UDP protocol. This
study utilised jMAVSim as a separate application to manage
MAVLink messages and forward them further to QGC.
Zongtong Luo et al. [4] utilised PX4 with RPi for an underwater
vehicle and usedMAVProxy for message forwarding and QGC as a
control station. QGC, being customisable and open source, does not
aid engineers to customise it to introduce their vehicle frame,
control surfaces and sensors. Developers will need to access the
PX4 firmware or QGC to calibrate the sensors and set control limits
for the actuators.

Zhenhua Jiang [5] also made use of JSBSim and ROS tools to
execute SWARM-based HITL simulation. He also integrated an
FPGA to conduct complex computational modules for dynamic
simulation and data communication via different protocols to
achieve rapid control response. SA Hangal [6] formulated a
framework using JSBSim and Python-based interfaces, which
also included MAVProxy for communication, while criticising
the inability of Simulink-based simulations to achieve a high-
fidelity response. The majority of the researchers are dependent
on MATLAB to test aircraft performance because Simulink
provides a toolbox to facilitate the testing [7]. Simulink
Realtime is a rapid prototyping toolset that aids HITL testing
with a single click. F. Prochazka [8] deployed the compiled code

from Simulink to an FPGA for real-time simulation, and he also
utilised X-Plane for UAV motion. Gazebo has also been gaining
popularity within the global drone community due to its large user
base. Also, it can be integratedwith ROS. In the study by Parker [9],
testing of a fixed-wing aircraft landing on a moving target was
conducted in a Gazebo environment, with different control
schemes employed, such as MPC, LQR and PID. The developer
had to create a model for each simulation component considered
that could affect UAV motion (i.e., gravitational model, wind,
Gusts and Turbulence, Ground effect, among others). Many
MAVLink-based drones are validated in SITL and HITL
simulations. These systems simulate real-world scenarios to test
the robustness of the control algorithms in various conditions [10].

Recent studies have not focused sufficiently on the development
of a universal testing platform or application for MAVLink-based
flight controllers, which are primarily used in small, low-powered
aircraft. Such a platform would only require a single application to
be run on the device, and since FDM is designed via an XML file, it
can also be executed as an instance in the same runtime in which
MAVLink parsing is being performed. Nonetheless, this would
greatly reduce the complexity of understanding UDP and
MAVLink protocols, along with the need for multiple windows
or terminals in the background, thus shifting the focal point of
engineers and developers towards effectively building and testing
their aircraft with customised autopilot modes and other control
schemes. However, there should also be an element to develop
understanding and implementation of MAVLink for an optimised
and robust Input Output (IO) interface. For visualisation and
characteristics, a Qt-based panel will provide sufficient
information regarding the flight’s attitude, Primary Flight
Display (PFD) and different tabs for navigation and autopilot
purposes. However, a sufficient knowledge of C++ and object-
orientated programming (OOP) is not required when operating
the “AeroQT” platform, as it is designed for application purposes
and serves as a standalone application for GCS controls.

Various features of different other GCSs are compared with
AeroQT in Table 1.

Table 1 makes it visually clear that AeroQT is not competing
with GCS software in field operations but rather filling the gap for
lightweight MAVLink testing focused on research and
development with built-in FDM support.

METHODS

To acknowledge the functionalities of the AeroQT testing
platform, the discussion will be based on the schematic
diagram in Figure 1. A concept of nested executables (i.e., an
executable within an executable) is implemented, which
eliminates the requirement of additional terminal windows to
run alongside the main application, i.e., QTJsbsim. The main
executable is a Qt-based GUI application comprising capabilities
such as visualisation of various sensor data received from either
JSBSim or PX4 via a UDP port, various autopilot algorithms and
execution of JSBSim as a shared library. Designing within the Qt
framework eases the development process because of the variety
of its libraries, classes, interactive GUI design, widget-based
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applications, cross-platform development and an intuitive code
editor/debugger.

Figure 1 illustrates the overall data flow of AeroQT as an
interface between JSBSim (FDM), Pixhawk (autopilot hardware),
and control modules. Sensor data from JSBSim (SITL/HITL) or
Pixhawk is sent to AeroQT, which manages communication via
UDP/TCP ports, device settings, and XML configuration files for
sensors and actuators. AeroQT initiates MAVLink
communication by parsing the incoming data and sending the
actuator commands. The autopilot system (including vertical
speed, heading, yaw damper, and manual control) then
processes the sensor data and feeds back control signals,
which are transmitted through AeroQT to either JSBSim or
Pixhawk, thus completing the simulation or hardware-in-the-
loop control loop.

AeroQT: Nested Executable
The schematic diagram shown in Figure 1 shows a node of the.ini
file that initiates the additional executable and certain
functionalities for communication and predetermining the
aircraft type and their trim positions. Working within the Qt
framework lets us utilise ‘QProcess’ to start external programs
and ensure effective communication with them. To extract the
information from the.ini file, the QSettings class allows for
portable operations on certain file formats, along with
managing application arguments and configurations. Once
these numbers of arguments are stored in a QString array,
they can be fed into QProcess to start the other application as
a standalone executable or a separate process.

The standalone process started by QProcess has two types of
arguments: MAVLink communication and JSBSim initialisation.

TABLE 1 | Summarises the differences between AeroQT and existing tools, highlighting its unique role as a lightweight MAVLink testing and evaluation platform.

Feature/Tool QGroundControl (QGC) Mission planner MAVProxy AeroQT (proposed)

Primary purpose Mission planning and flight operations Mission planning and
telemetry

Command-line GCS and
scripting

Lightweight MAVLink testing and autopilot
evaluation

Installation and setup Requires dependencies, multiple
configurations

Windows-based, heavier
setup

Requires Python scripting
and a terminal

Single stand-alone executable, minimal
setup

MAVLink handling Yes (full protocol support) Yes Yes Yes, integrated parser with a simplified
interface

Flight dynamics
modelling (FDM)

External simulator required (SITL,
Gazebo, JSBSim)

External simulator required External simulator required Built-in FDM via XML, runs in the same
runtime

Visualisation Rich UI, PFD, maps Rich UI, telemetry plots Limited CLI output Qt-based PFD, navigation and autopilot
tabs

User skill requirement Moderate (configuration, setup) Beginner–intermediate Advanced (command line,
scripting)

Beginner-friendly, no coding required

Customisation focus Mission planning and GUI Mission planning Protocol testing and scripts Autopilot mode development, I/O
evaluation

Target use case Field operations, mission control Field operations Research, scripting
automation

Research, development, and testing of
MAVLink autopilot logic

FIGURE 1 | Overall functionality of the application.
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MAVLink requires serial communication with devices, and
JSBSim requires sufficient arguments to initiate the runtime
simulation. However, this process must have a data flow
control mechanism to avoid overflow and loss. “Chrono” is a
part of the C++ Standard Library and can be used to implement
data rate control. Selecting and testing an adequate data rate for
the runtime application involves considering factors such as
network bandwidth, latency requirements, and the means of
data transmission. The data rate has a proportional relation
with the device baud rate, which is usually 921,600 for USB
connections and 57,600/115,200 for telemetry connections.
PX4 sensors have different transmission rates, with the Inertial
Measurement Unit (IMU) andmagnetometer often having a high
data rate ranging from tens to hundreds of hertz. The adjustment
may require an iterative task, but the MAVLink acknowledge
message can be utilised for this purpose by measuring the time
interval between the commands sent and received by PX4.

JSBSim as a Shared Library
JSBSim is an open-source FDM that can be modified to include
custom dynamic parameters such as moments, inertia,
accelerations and position, which are then processed by
nonlinear aircraft equations of motion. A minimalist,
lightweight version of JSBSim was built by reducing certain
features, such as propulsion models, complex aerodynamics,
and unnecessary aircraft components (e.g., hydraulics and
pneumatics), to reduce the computational load. JSBSim is also
capable of generating dynamic link libraries, also known as shared
libraries, which can be loaded and linked at runtime by the
program “Bridge_executable”. This library contains the
compiled JSBSim code used by the application to enable
realistic flight simulation. By linking the shared library, the
application also gains access to a set of header files in which
JSBSim functions and classes are contained. FGFDMExec.h (Flight
Dynamics Model Executive) is an important header to include in

the project for accessing the “FGFDMExec” class, which manages
and is responsible for coordinating various components in the
simulation, including aircraft systems, setting component paths,
control inputs, and more. The schematic in Figure 2 shows the
SITL to HITL interconnection for JSBSim.

Networking With JSBSim I/O Ports
While JSBSim is a standalone FDM and provides support for a
shared library, it can be integrated into a runtime application by
defining native nodes in XML files and using them for
information exchange between programs. UDP, which is
known to be a lightweight protocol, is used to facilitate
communication for real-time data transmission.

The output channel configuration on localhost at port
5138 with a rate of 10 Hz is specified as follows:

<output name=“localhost” type=“SOCKET”
protocol=“UDP” port=“5138” rate=“10”>
<!-- List of output properties -->
</output>
These output property nodes will then be read by QTJSBSim as

inputs to visualise the simulation outputs, such as aircraft
position, attitude, velocity, propulsion data and more,
representing various aspects of state and performance.

The functionality of the output socket is utilised to
communicate across applications via a locally defined UDP
port. As discussed in Section Networking With JSBSim I/O
Ports, sensor nodes defined in XML have read and write
capabilities using the GetPropertyValue or SetPropertyValue
functions. The Bridge_executable reads data from PX4 over
MAVLink serially and emits it on these property nodes. The
sample format for setting a value for a node in C++ is as follows:

FDMExecPointer->SetPropertyValue
(“pixhawk/sensor/sample”,variable_
data_from_px4);

FIGURE 2 | SITL and HITL workaround with JSBSim.
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At the application end, the Qt framework provides various
functionalities to manage the data emitted by JSBSim through
output socket 5138, one of which utilises the QUdpSocket class to
read the UDP datagrams. This involves binding to an address and
port, followed by reading the datagrams to transfer the data. Property
node values are stored in a QByteArray, which then can be separated
into their respective fields for successful parsing of incoming data.

The block of code that follows configures an input channel on
port 5139 with a rate of 10 Hz:

<input port=“5139” type=“QTJSBSIM”
rate=“20”>
<!-- List of input properties -->
</input>

In the context of real flight testing and HITL, the input port is
utilised as a means to transmit the actuator response from the Qt-
based GUI panel to a list of respective property nodes. QTJSBSim
has the role of packing control and command data into a specific
format and transmitting it to the relevant destination node via
UDP. The Bridge_Executable will then read these property values
by using GetPropertyValue and send them to PX4 via MAVLink.
The following is sample code for reading data from property
nodes in C++:

Data_send_PX4=FDMExecPointer-
>GetPropertyValue(“pixhawk/sample_node”);

Definition of Sensors and Actuators in
XML Format
The XML format for defining sensors and actuators represents a
configuration file designed for creating JSBSim property nodes.
The file is structured with a root element that defines the system,
and it contains various components and properties for the
runtime application. These properties include parameters
related to angles, arming status, airspeed, battery status, and
acceleration along different axes. The component breakdown is
shown in Figure 3.

In JSBSim, an open-source Flight Dynamics Model (FDM),
sensors and actuators are defined in the aircraft’s XML
configuration files to simulate specific aspects of an
aircraft’s systems.

Sensors
• Definition: Sensors in JSBSim emulate the behaviour of real-
world aircraft sensors by providing data (e.g., position,
velocity, and altitude) with optional noise and biases.
These are used for navigation, guidance, or feedback
control systems in simulations.

• Purpose: To mimic real-world sensor behaviour, including
inaccuracies such as delays, biases, and noise.

• XML Representation: Sensors are defined under
the <sensors> tag in the aircraft file.

FIGURE 3 | System components overview [11].
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Actuators
• Definition: Actuators simulate physical devices that control
the aircraft based on inputs, such as control surfaces (e.g.,
ailerons and rudders) or engine power.

• Purpose: To apply forces or moments to the aircraft model
based on inputs, with optional modelling of delays or
mechanical limits.

• XML Representation: Actuators are defined under
the <actuators> tag in the aircraft file.

MAVLink Implementation
MAVLink is a lightweight communication protocol designed for
unmanned systems, known for its efficiency and compactness. Its
minimal data overhead, use of a binary protocol, compact
message format, customisability, and fixed message length all
contribute to its lightweight nature. By incorporating error-
checking mechanisms, MAVLink ensures data integrity while
minimising latency in transmission. This protocol is adjustable to
numerous communication channels, which makes it suitable for
resource-constrained unmanned systems where efficient data
exchange is crucial for reliable and efficient operation. The
functionality of MAVLink is shown in Figure 4.

The process of entangling MAVLink in the runtime
application is crucial for conducting Hardware-in-the-Loop
(HITL) simulation testing and incorporating the application
with actual flight-testing capabilities. The C++ MAVLink
library has been utilised for embedded communication with
flight controllers, either serially or via a radio telemetry link.
These messages are serialised into a binary format before
transmission and deserialised upon receipt. The MAVLink
library provides functions for serialising C++ message objects

into a byte stream and deserialising byte streams into C++
objects. The inclusion of an appropriate MAVLink header is
necessary to make these objects accessible in the application.
On the Flight Control Unit (FCU) side, these incoming
messages are dispatched to the relevant handlers based on
the message’s ID and type. The following is sample code for
sending a MAVLink packet from a control station application
to a flight controller:

mavlink_rc_channels_override_t
rc_override; //Msg to override rc channels
mavlink_message_t msg_rc; //instantiate
mavlink message to be sent as a packet
rc_override.chan1_raw=aileron; // Aileron
Channel sending data to aileron servo
rc_override.chan2_raw=elevator; // Elevator
Channel sending data to elevator servo
rc_override.chan3_raw=throttle ;// Throttle
Channel sending data to BLDC motor
rc_override.chan4_raw=rudder;//Rudder
Channel sending data to rudder servo
rc_override.chan5_raw=0; // Extra ports
rc_override.target_system=1;//Send command
to MAV 001
rc_override.target_component=1;//PX_COMP_
ID_ALL; mavlink_msg_rc_channels_override_
encode(1, 0, &msg_rc, &rc_override);
send_mavlink_message(&msg_rc);

Prior to sending and receiving data from the flight controller,
asynchronous serial communication is established using the
“boost.Asio” library for smooth data transmission. A complete

FIGURE 4 | Functionality of MAVLink implementation.
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approach for implementing a MAVLink bridge between the
control station and the flight controller relies on various
elements and should be discussed in detail.

Serial Communication
A serial connection is required between the application and
Pixhawk at a certain baud rate for transmitting the MAVLink
buffer from Pixhawk to the application and vice versa. Boost-Asio
contains a class named “serial_port” for communicating with
portable serial devices. When connected via USB, the device name
is set to “ttyACM0,” which is the default port through which
Pixhawk communicates in case of HITL. When connected via
telemetry, the device name is set to “ttyUSBn” where “n” depends
on the port to which the telemetry receiver device is attached (n =
0,1,2,3). Connectivity via USB is always important for calibrating
servos and sensors during the pre-flight phase.

When configuring serial ports using Boost. Asio library, it is
important to set the device parameters such as start or stop bits,
parity bits, and flow control to none because MAVLink, as a
protocol, does not use traditional start and stop bits such as those
found in standard serial communication protocols such as
Universal Asynchronous Receiver-Transmitter (UART). Instead,
MAVLink relies on a fixed baud rate for communication and uses a
message-based format that includes message framing and
checksums for error checking and synchronisation.

Data Translation
Data translation with MAVLink is a critical part of integrating
sensors, devices, or software components into MAVLink-based
systems, allowing proper communication and buffer transmission
within the system. When a device is opened with an application with
no overflow in receiving and transmitting data, the next stage is to
encode and decode the outgoing and incoming buffers, which
contain MAVLink messages in the form of packets. Error
handling should be implemented to manage cases where decoding
fails or where message integrity checks are not passed. This process is
repeated for eachMAVLinkmessage type relevant to the application.

Encoding the Outgoing Buffer
In this setup, only actuator data and arming commands are
transmitted because mission commands are not necessary due to
the application’s integration with autopilot modes. Before sending
messages to the Pixhawk controller, the application must identify
itself as a control station using MAVLink heartbeat messages to
ensure communication with the correct system ID. Heartbeat
messages consist of vehicle type, component ID and the version
of the MAVLink protocol used by the application.

The aircraft features four control surfaces: two ailerons, a
rudder, and an elevator, each driven by a servo, along with a
Brushless Direct Current (BLDC) motor for thrust control. A
custom airframe for our aircraft can be introduced in the

FIGURE 5 | MAVLink message decoding flowchart.
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PX4 firmware, but the aircraft used for testing already has a
matching airframe, MAV_ODID_UA_TYPE_AEROPLANE,
which fulfils the control surface requirements.

Since only one vehicle is used on theMAVLink channel, the system
IDwill be set to “1.”To send information, broadcastingmessages to all
components of the receiving system is necessary, and for this purpose,
the component ID is set to MAV_COMP_ID_ALL, which allows
access to all onboard and offboard components of Pixhawk.

The struct is now ready to be sent to Pixhawk using the encode
function from the heartbeat MAVLink library:

mavlink_msg_heartbeat_encode(‘ID of this
system’, ‘ID of this component (e.g. 200 for
IMU)’, ‘The MAVLink message to compress the
data into’, ‘C-struct to read the message
contents from’)

Decoding the Incoming Buffer
In order to receive information from the Pixhawk, such as sensor
and servo status, either via USB or telemetry, a translation of the
buffer is required. This information is stored in an array and

FIGURE 6 | Sample heading autopilot algorithm.

FIGURE 7 | Addition of features to QTJSBSim for HITL.
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parsed in a loop twice the size of the received buffer to avoid noisy
data. However, it is not recommended to use loops in
communication bridges; the maximum buffer size
(MAVLINK_MAX_PACKET_LEN) is limited to a few bytes, so
it will not create delays when sending and receiving messages. The
maximumMAVLink message length can be 280 bytes, so our loop
will execute for 280 iterations. This method of parsing the
MAVLink buffer is taken from MAVROS, which executes a
loop on the received buffer up to the size of the received bytes.

The mavlink_parse_char function in the mavlink_helpers
header file is used to parse the incoming packet. The function
parses the data 1 byte at a time, returning 0
(MAVLINK_FRAMING_INCOMPLETE) as it progresses, and
1 (MAVLINK_FRAMING_OK) upon successful decoding of a
packet. Below is a sample format for using mavlink_parse_char():

mavlink_parse_char(mavlink channels (0,1,
2,3), received buffer array, &message,
&_status)

On returning the MAVLINK_FRAMING_OK, a switch
condition is implemented for each message ID, which is then
used as a case to decode a variety of MAVLink messages. These
cases take the form of message IDs (from 0 to 255). For example, to
decode a packet containing a raw IMU sensor message, the message
ID is 27 orMAVLINK_MSG_ID_HIGHRES_IMU. Figure 5 shows
how the process works for parsing and decoding the MAVLink
messages when bytes are received via the serial channel.

Sending and Reading Buffer
A packet of information is ready to be delivered serially using the
boost library serial_port, in which the async_write_some() function is
used to write data to a target device asynchronously. The entire

message is encoded via theMAVLink encode function and converted
into a mavlink_message_t to be then sent to Pixhawk, which has the
ability in its firmware to understand MAVLink messages; therefore,
there is no need for a loop to store information in an array.

Again, the boost library serial_port is needed, as it has a function
called async_read_some(). This reads the bytes received from the
serial port and returns an array of information, which will then be
decoded by MAVLink. To avoid noise or delays, the binding of the
decoding buffer and the reading buffer functions is required.

A MAVLink bridge has been developed between the control
station and Pixhawk; however, in the case of telemetry, it is necessary
to counteract any delay that may occur due to a lower transfer rate
and loss of communication. This can be achieved by switching from
the primary link to the secondary link, andMAVLink also facilitates
the use of the high-latency data transfer mode of MAVLink 2.0.

Ground Autopilot Test Capability
(Test Scenario)
The dynamics can be modelled using the following system state
variables: longitude (px), latitude (py) and altitude (pz) for
position; u, v and w for velocity; roll (γ), pitch (θ) and yaw (ψ)
for attitude; ωx, ωy and ωz for angular rate; ax, ay and az for
acceleration; Va, Vg for air speed and ground speed; α for the attack
angle and β for the slide-slip angle, respectively. The control inputs
of the aircraft include the left and right ailerons (δa-1, -2), which
are responsible for lateral motion(γ), the elevators (δe), which
provide longitudinal motion(θ), the rudder (δr), which provides
directional control (ψ) and the throttle (δt) for thrust control.

A sample autopilot mode, such as heading control, can be
integrated within the application. Prior to heading control,
stabilisation of the yaw rate (R) at approximately zero radians

FIGURE 8 | Heading autopilot response.
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per second is required by actuating the rudder to prevent an
oscillating behaviour in the aircraft, commonly known among
pilots as “Dutch roll”, when using the ailerons to achieve the
desired heading position. A basic PID algorithm and testing can
only be performed when the aircraft is provided with a small
perturbation in bank angle (γ). For the PID variables, the desired
value is zero, and the current value is the yaw rate with a rudder
limiter of 10% to −10%. This percentage will be converted to a
Pulse Width Modulation (PWM) signal. This signal is then sent
to Pixhawk ports via MAVLink.

After eliminating unnecessary oscillations in the lateral axis with a
yaw damper, a cascade PID controller is deployed to achieve the
heading control autopilot. Figure 6 illustrates a cascading controller:

The above controller is designed to control the heading guidance
on the ground while the aircraft is taxiing on the ground. This
ensures that the aircraft responds to commands sent through the
GCS using the MAVLink protocol in real-time environments.

RESULTS AND DISCUSSION

Executable_bridge and AeroQt are both open-source applications
that can be found under the JSBSim repository. They were
designed separately for SITL and HITL simulations using
Pixhawk sensors and actuators, and development is ongoing
on GitHub, with the majority of programmers trying to
integrate them with MAVROS to visualise simulations.

Qt Creator, which is free to use, appears to be the perfect tool
for customising control panels according to requirements and for
integrating MAVLink with JSBSim for HITL simulations.
Executable_bridge originally could only write messages to
Pixhawk, and it was interlinked with QGC to receive actual
sensor and GPS data. Figure 7 shows the custom features

added to the application for HITL simulations and the
addition of indigenous autopilot modes.

All the results shown in SITL would be the same in HITL, but the
actual actuator/servo status is required for verification that MAVLink
communication is working and that the actuator response in JSBSim is
aligning with the response of the real actuators mounted on Pixhawk.
In Figure 8, a heading follower autopilot was implemented to observe
and compare the FDMand real servo responses of the actuator aileron.
This is because a direct servo signal varying from1 to−1 cannot be sent
through the JSBSim property node. Amapping function is required to
match the two ranges, i.e., the servo signals to PWM,which range from
1000 to 2000. This ensures that the actuator mapping algorithmworks
well and that the real servo accurately follows the servo signal generated
by the FDM. This is shown in Figure 9.

The heading control performance was evaluated using a single
test run, with the results quantified to complement the descriptive
plots. The RootMean Square Error (RMSE) between the desired and
actual heading was 2.51°, indicating a low average deviation. The
maximum observed error was 2.88°, with a standard deviation of
0.54°, suggesting the controller maintained stable and consistent
performance throughout the test (Table 2). Although only one test
was conducted, these metrics support the visual evidence of
convergence and control accuracy. Additional trials and statistical
averaging are planned for future work to strengthen confidence in
the controller’s generalizability.

FIGURE 9 | HITL aileron servo response; (a) Aileron servo response and (b) Input signal from FDM.

TABLE 2 | Analysis of errors in heading control performance.

Metric Value (degrees)

RMSE 2.51
Max Error 2.88
Standard Deviation 0.54
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FIGURE 10 | Control response of the aileron without Gaussian noise; (a) Pure heading without noise induction, and (b) Aileron control without noise.

FIGURE 11 | Control response of the Aileron after applying 0.002% Gaussian noise; (a) Noise induction in the heading output response and (b) Aileron control
variation due to noise.

Zhejiang University Press | Published by Frontiers November 2025 | Volume 3 | Article 1452411

Aziz and Loya Aerospace Research Communications MAVLink Test Bench AeroQT



Effect of Sensor Noise on Control
Performance
A PID based control system can undergo significant performance
related circumstances in simulations when sensor noise is
introduced. AeroQT is equipped with numerous autopilot modes,
but for the purpose of benchmarking control performance, heading
control is taken into consideration. Figure 10 shows the aileron
control response before noise induction:

Gaussian noise with a variation of 0.002% induced into a yaw
sensor (magnetometer):

<sensor name=“new-sens/noisy-heading”>
<input>altitude/psi-deg</input>
<lag> 0 </lag>
<noise variation=“PERCENT” distribution=
“GAUSSIAN”> 0.002
</noise>
</sensor>

Figure 11 shows aileron control response after
noise induction:

FIGURE 12 | Data rates from the AeroQT application: (a) Using USB serial communication and (b) Using telemetry communication.
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Figure 11 shows the control response of the aileron input
after a 0.002% noise induction. The PID heading control is able
to correct the aircraft heading without further need for tuning in
case of sensor noise, but causes a continuous higher degree of
actuation, which can result in more power consumption.
Further tuning or the application of a Kalman filter could
address this continuous actuation, but this is beyond the
scope of this research.

Data Quantification and Comparison With
QGroundControl (QGC)
Mission planners such as QGC and APM have been using
MAVLink in an optimised way. Meanwhile, numerous efforts
have been made to deliver a control device for Pixhawk-based
aircraft with much less data loss and rapid data transmission.
MAVLink testing must be evaluated with USB serial (SITL)
and via telemetry, comparing the transfer rate with that of
mission planners. USB serial in MAVLink usually operates at a
baud rate (signal units per second) of 921,600, while radio
telemetry can operate at a baud rate in the range of
9,600 to 115,200.

Taking the PX4 IMU sensors into account for observation, we
can observe that the PX4 has built-in altitude estimators that take
IMU sensor data as input and provide aircraft altitude as output.
The serial USB data rate is presented in Figure 12a, and the data
rate using telemetry is shown in Figure 12b.

QGC is a well-established mission planner for Pixhawk-based
vehicles and can be used as a means of comparison with our

control station. Figure 12a shows that the AeroQT application
can translate MAVLink messages at the same constant rate of
50 Hz as QGC via USB serial, as demonstrated by the altitude
message incoming from Pixhawk.

When operating on telemetry at a baud rate of 57,600, the data
rate is much lower than for serial port communication, but
remains constant and stable at 4.25 Hz over a varying range
of distances between the telemetry and flight controller, as shown
in Figure 12B. Comparing with QGC with same baud rate, the
data rate is still half of the rate at which QGC is operating at, can
be seen in the Figure 13.

Although both QGroundControl and AeroQT receive MAVLink
messages from the same telemetry stream, a notable frequency
disparity was observed: 11.5 Hz in QGC vs. 6.5 Hz in AeroQT.
This difference is likely due to protocol handling and GUI update
rates. QGC aggressively polls and visualises incoming MAVLink
messages with optimised multi-threaded handling, whereas
AeroQT, being a lighter-weight interface, limits update frequency
to reduce CPU usage and conserve bandwidth. Additionally,
message throttling or internal MAVLink parsing intervals (e.g.,
event-driven updates in AeroQT) may further reduce the
apparent message rate.

The underlying cause of these frequency differences can be
explained by estimating the one-way latency from PX4 to
AeroQT and the packet drops that occur when using a radio
telemetry connection. The MAVLink TIMESYNC message has
been utilised for latency estimation and performs a simplified
version of the Network Time Protocol (NTP). This allows the
systems to:

FIGURE 13 | Data rate from QGC via telemetry.
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1. Estimate Round-Trip Latency (RTT)
2. Estimate the clock offset between systems
3. Optionally synchronise clocks

Figure 14 shows the effects of latency, packet loss and frequency
when using telemetry.When telemetry is connected at a baud rate of
57,600, the latency appears to fluctuate around 400 ms, which poses
challenges for time-sensitive control loops. This high latency is likely
attributable to network stack buffering, simulator scheduling delays,
or MAVLink message queuing. Such delays can degrade the
performance of HITL testing and limit responsiveness in offboard
modes. To mitigate the observed latency of 400 ms, future
implementations may benefit from a lower-bandwidth MAVLink

profile, real-time scheduling of the simulator process, or direct serial/
USB telemetry instead of Wi-Fi-based UDP.

In our HITL loop, the measured telemetry delay is
approximately T = 0.4 s. A pure time delay contributes to a
frequency-dependent phase lag. The phase lag delay (φ_delay)
equation is used to calculate phase lag using Equation 1.

φ delay � −ωT radians( ) � −360° × f × T (1)
At the loop crossover frequency (ω_c), this lag subtracts

directly from the phase margin using Equation 2, which
provides a new phase margin, PM_new.

PM new ≈ PM 0 − ω c T (2)

FIGURE 14 | (a) Latency, (b) Packet Loss and (c) Frequency plot while connected via radio telemetry.
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where PM_0 is the margin without delay. To guarantee the
required phase margin (PM_req, typically 30°–45°), the
allowable crossover frequency must satisfy the bandwidth
limit. Therefore, logical equations are placed, i.e., Equations 3, 4:

ω c≤
PM 0 − PM req( )

T
(3)

f c≤
PM req

2πT( ) (4)

(with PM_req expressed in radians).
For T = 0.4 s, the required margins are found to be:

• With a required margin of 45° (≈0.785 rad), f_c ≤ 0.31 Hz
(ω_c ≈ 1.96 rad/s).

• With a required margin of 30° (≈0.524 rad), f_c ≤ 0.21 Hz
(ω_c ≈ 1.32 rad/s).

Thus, a 400 ms delay limits the closed-loop bandwidth to
approximately 0.2–0.3 Hz if stability margins are to be
preserved. At 1 Hz, the delay alone would add −144° of lag,
enough to destabilise the majority of the loops. In addition to
this, inner-loop altitude and rate control must remain
onboard the Pixhawk (50–400 Hz), while only slower outer
loops (e.g., position, path, or energy management) can be
closed through the delayed HITL channel.

CONCLUSION

In the field of aircraft development and testing via SITL and HITL
simulations, JSBSim enables the rapid prototyping and iteration of
aircraft designs. Engineers can quickly modify aircraft parameters
within the simulation environment and evaluate their impact on
performance, stability, and control without having to make physical
changes to an aircraft. The need arises for a test bed application that
can cater for both types of simulation. Therefore, the outcome of this
research focused mainly on a universal platform to serve this purpose,
with indigenousMAVLink integration enabling actual flight tests to be
conducted during ground taxi phases, as demonstrated in this study.

It is worth mentioning that output frequency testing is bound
to either USB or telemetry and demonstrated a similar frequency
of 50 Hz to QGC; however, in the case of telemetry, it was 6.5 Hz,
half of the actual frequency of 11.5 Hz.

AeroQT provides a lightweight, standalone platform that
integrates MAVLink parsing and flight dynamics modelling into
a single runtime, significantly reducing the setup complexity of HITL
testing. Its Qt-based interface offers intuitive visualisation through a
Primary Flight Display, navigation data, and autopilot tabs, enabling
engineers to focus on control algorithm design and autopilot
evaluation without requiring expertise in C++ or MAVLink
internals. These strengths distinguish AeroQT from traditional
ground control software, which is typically more complex and
mission-orientated. Nevertheless, some limitations remain: the
current version is primarily suited to single-aircraft evaluation
with JSBSim; it does not yet support advanced mission planning,
multi-UAV scalability, or external simulators; and the observed
telemetry delay (~400 ms) restricts the real-time controller

bandwidth, which slows the outer loops. Future work will address
these gaps by improving portability, expanding simulator and
autopilot compatibility, adding richer visualisation and logging
features, and developing scripting interfaces to enable automation
and multi-vehicle experimentation.

Nevertheless, this article is also a guide for implementingMAVLink
communication in C++ with Pixhawk and other supported FCU
protocols. By following the guidelines outlined in this study, readers
can confidently developMAVLink-based communication systems for
their UAVs, leveraging the power and flexibility of C++.
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