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In the UK, there are approximately 650,000 babies born each year. The pregnancy journey
is not only unigue to each woman, but for each individual pregnancy that may be
experienced. Pregnancy complications, miscarriage, and stillbirths are still a huge
problem with maternity services, highlighting the need for more research to understand
the underlying causes, earlier detection or even prevention of conditions such as pre-
eclampsia, gestational diabetes, restricted fetal growth and the impact of infection during
pregnancy. One area of interest which transcends these conditions is the functioning of the
placenta. The placentais the lifeline for the fetus to the mother. It is a unique organ, crucial
for survival, but also known to have impacts on the lifelong health of the fetus. Aberrant
development, as well as in utero exposure to infections and environmental chemicals are
known to have multiple impacts on the functioning of the placenta, and the fetus it
supports. The placental environment is a fascinating organ to study with much still to be
learned about its development, role in pregnancy complications, as well as its impact on
long term offspring health. The placental environment is abundant with immune cells and
mediators. There is a need within medical and biomedical practice for a good
understanding of the complex relationship between immune cells, the decidua and
placenta, and doing so wil aid in development of better diagnostic tests and
treatments for placenta-driven pregnancy complications and infections. This review will
summarise the placenta as an immunological environment through description of key
decidual immune cells, the expression of innate recognition receptors and it will provide an
update on the placental immune response to infections of importance during pregnancy.

Keywords: placenta, immunomodulation, trophoblast, decidua, inflammation

INTRODUCTION

The human placenta is a temporary, disc-shaped organ, weighing approximately 500g [1]. The
placenta functions to support fetal development during pregnancy and is removed from the uterus
after birth. It is multifunctional, supporting the transfer of oxygen and nutrients to the fetus, the
removal of waste products, acting as an endocrine organ, and filtering fetal blood. Interestingly, the
placenta is abundant in immune cells. Figure 1 provides a general overview of the structure of the
mature placenta. The umbilical cord contains one umbilical vein and two umbilical arteries, carrying
blood to and from the fetus, respectively. Within the placenta, fetal capillaries are found within
branches of chorionic villi [2]. The epithelial covering of the villi is the syncytiotrophoblast layer, or
syncytium, which is maintained by the fusion of underlying cytotrophoblast cells [2, 3]. The
exchange of materials between fetus and mother takes place between the maternal blood within the
intervillous space and the syncytiotrophoblast. Maternal spiral arteries deliver oxygen and nutrient-
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rich blood to the intervillous space, with maternal veins draining
blood back to the maternal systemic circulation.

This review will consider our understanding of the immune
function within the placenta, how immune cells are vital in the
establishment of pregnancy, placentation and in the defence
against pathogens.

PLACENTAL DEVELOPMENT

Placental development, or placentation, is a complex process.
There are two key initial stages which must occur in tandem:
firstly, successful blastocyst preparation, which involves hatching,
apposition and attachment to the endometrial lining; and
secondly, the creation of a uterine environment which is
receptive to receive the blastocyst during the implantation
phase. This latter process, decidualization, involves extensive
changes within the endometrium to convert it into an
environment capable of accepting the implanting conceptus.
The blastocyst, which is derived from the fusion of a single
ovum and sperm, is 50% antigenically foreign to the maternal
immune system and requires a complex series of adaptations to
ensure successful implantation. Indeed, the process of
endometrial decidualization has been described as the primary

Fetal capillaries

Syncytiotrophoblast layer

Maternal vein

Intervillous space

Maternal spiral artery

horionic Villi

FIGURE 1 | General overview of mature placental structure. The diagram shows the umbilical cord and placenta. Fetal capillaries are found within branches of
chorionic villi, covered by the sycytiotrophoblast layer, and the underlying cytotrophoblast cells. The intervillous space separates the syncytiotrophoblast and maternal

driver of pregnancy health [4]. A delicate balance between pro-
inflammatory and tolerance mechanisms is required, with
inadequate endometrial immunomodulation linked to
recurrent implantation failure [5, 6].

The blastocyst is formed around 5-6 days post-fertilization
and in simplified terms, consists of an inner cell mass, which
develops into the embryo, and an outer layer of trophoblast
cells, which develops into the placenta. Around 7-8 days post-
fertilisation, the blastocyst is ready to implant into the
decidua. The decidua is abundant with immune cells, with
leukocytes making up 30%-40% of all decidual cells in early
pregnancy [7, 8]. This is a crucial consideration, as the cells of
the blastocyst express paternal antigens, which have the
potential to elicit a response from the cells of the maternal
immune system. Therefore, understanding which cells are
present, how their function is modulated, and indeed, how
these cells contribute to the establishment of pregnancy
furthers our ability to understand implantation failure and
support embryo implantation during assisted
conception treatment.

Placentation is usually established by around week 15, with
three major trophoblast types described: cytotrophoblasts,
extravillous cytotrophoblasts and syncytiotrophoblasts [9].
Much remains to be learned about this process, with single-
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TABLE 1 | Summary of key studies exploring Pattern Recognition Receptor expression by human trophoblasts.

PRR Expression pattern Placenta stage/type of trophoblasts (detection method) References

TLR1  First trimester trophoblasts Primary trophoblasts (qPCR) [147]

TLR2 Extravillous trophoblasts First trimester primary trophoblasts (IHC) [148]
Villous/intermediate trophoblasts Term placenta (IHC) [149]
First trimester trophoblasts Primary trophoblasts (qPCR) [147]

TLR3 First trimester trophoblasts Primary trophoblasts (gPCR) [147]
Cytotrophoblasts and syncytiotrophoblasts First trimester cytotrophoblasts, third trimester syncytiotrophoblasts (MRNA [150]

expression, IHC of placental explants)

TLR4 Extravillous trophoblasts First trimester primary trophoblasts (IHC) [148]
Villous/intermediate trophoblasts Term placenta (IHC) [149]
Extravillous trophoblasts/intermediate trophoblasts, Second, third trimester (IHC) [151]
villous Hofbauer cells
First trimester trophoblasts Primary trophoblasts (PCR) [147]
Cytotrophoblasts and syncytiotrophoblasts First trimester cytotrophoblasts, third trimester syncytiotrophoblasts (MRNA [150]

expression, IHC of placental explants)

TLR5 First trimester trophoblasts Primary trophoblasts (qPCR) [147]

TLR6 First trimester trophoblasts Primary trophoblasts (QPCR) [147]

TLR7 First trimester trophoblasts Primary trophoblasts (qPCR) [147]

TLR8 First trimester trophoblasts Primary trophoblasts (QPCR) [147]

TLR9 First trimester trophoblasts Primary trophoblasts (qPCR) [147]

TLR10 Villous and extravillous trophoblasts First trimester and term (IHC, Western blotting, gPCR) [152]
First trimester trophoblasts Primary trophoblasts (PCR) [147]

NOD1  Extravillous trophoblasts First trimester primary (IHC, Western blotting, gPCR) [153]

NOD2  Extravillous trophoblasts First trimester primary (IHC, Western blotting, gPCR) [153]

RIG-1  Syncytiotrophoblasts Term (IHC) [29]
Chorionic villi & decidua Third trimester, mRNA and protein expression (QPCR, Western blotting) [154]
Trophoblasts Term placenta (IHC) [155]

MDA5  Chorionic villi & decidua Third trimester, mMRNA and protein expression (QPCR, Western blotting) [154]
Trophoblasts and villous stroma Term placenta (IHC) [155]

TLR, Toll Like Receptor; NOD, nucleotide oligomerization domain; RIG, retinoic acid-inducible gene; MDA, melanoma differentiation-associated protein; gPCR, quantitative polymerase

chain reaction; IHC, immunohistochemistry.

cell RNA sequencing studies characterising the differentiation
pathways between these trophoblastic cell types [10]. Generally,
there is still much to be learned about the function and responses
of the trophoblastic cell types within the placenta, as well as a
need to fully characterize the function of the immune cell types,
mediators and immunomodulators within the placenta. Indeed,
Olmos-Ortiz and colleagues have reviewed how the placenta itself
could be considered part of the innate immune system due to the
plethora of components present [11].

IMMUNE ENVIRONMENT OF
THE PLACENTA

Innate Receptor Expression Within

the Placenta

For the propagation of any innate immune response, there must
first be recognition of the presence of a pathogen. Pattern
recognition receptors (PRRs) are evolutionarily conserved
germline-encoded receptors which can initiate responses upon
recognition of molecular signatures of pathogens (pathogen
associated molecular patterns, PAMPs) and damaged or dying
cells (damage-associated molecular patterns, DAMPS) [12]. PRRs
consists of a number of different receptor groups, including, but
not limited to, Toll-Like Receptors (TLRs) [13], Nod-Like
Receptors (NLRs) [14, 15], Scavenger Receptors [16] and RIG-
like receptors (RLRs) [17].

Characterisation of PRR expression by trophoblastic cells
remains a contentious and evolving area of placental
immunology. Despite decades of research, consensus has yet
to be reached regarding the precise expression profiles and
functional relevance of PRRs, particularly TLRs, within the
placenta. It is widely acknowledged that TLR expression
within the placenta is not static but instead subject to
temporal and spatial regulations [18], varying across
gestational stages and trophoblast subtypes. This complexity is
further compounded by the various methods used and often
producing differing results; histology, qPCR, flow cytometry,
single-cell RNA sequencing, for example. While qPCR
provides quantitative gene expression data, it lacks spatial
resolution; conversely, histological approaches can localise
protein expression but may suffer from antibody specificity
issues and subjective interpretation. Moreover, the advent of
high-throughput technologies like single-cell RNA sequencing
has begun to wunravel previously unappreciated cellular
heterogeneity within the trophoblast population, challenging
earlier assumptions based on bulk tissue analysis [19-21].
Table 1 summarises key studies that have attempted to map
PRR expression in placental trophoblasts, highlighting both
converging and conflicting data.

A recent comprehensive review by Motomura and colleagues
[22] has attempted to synthesise these disparate findings, offering
a more cohesive narrative on PRR expression in the human
placenta. Importantly, it extends beyond mere characterisation to
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interrogate the functional implications of PRRs in pregnancy
complications such as preeclampsia, intrauterine growth
restriction, and preterm birth. This shift from descriptive to
mechanistic inquiry marks a critical evolution in the field,
underscoring the need for integrative approaches that combine
molecular profiling with functional assays and clinical
correlation. Future research must prioritise standardisation of
methodologies and embrace systems-level approaches to fully
elucidate the immunological landscape of the placenta and its role
in maternal-fetal health.

Aberrant expression of PRRs has emerged as a pivotal factor in
the pathogenesis of pre-eclampsia, a multifaceted syndrome
characterized by a convergence of vascular, immunological,
and placental dysfunctions [23, 24]. While the precise
etiological sequence remains under investigation, it is
increasingly evident that there are underlying immune
modulations [25], which either contribute to the development
of pre-eclampsia, or are a consequence of pre-eclampsia. Notably,
pre-eclamptic placentas exhibit increased TLR4 expression [26],
implicating heightened TLR-mediated signalling in the
amplification of local inflammation, oxidative stress and poor
extravillous cytotrophoblast invasion [24, 27, 28]. These
disruptions compromise spiral artery remodeling, a hallmark
of placental insufficiency in pre-eclampsia. Emerging evidence
suggests that the immune landscape of the placenta differs
between early and late onset pre-eclampsia, with distinct TLR
expression profiles potentially reflecting divergent pathogenic
trajectories. Despite the extensive focus on TLRs and their role
in pre-eclampsia, the potential role of other types of PRR in pre-
eclampsia are now emerging. For example, it has been shown, in
contrast to the expression pattern of TLR4, that retinoic acid-
inducible gene I (RIG-I), a cytosolic RNA sensor of the RIG-I-like
receptor (RLR) family, exhibits markedly reduced expression in
placentas of both late and onset pre-eclampsia [29]. This
downregulation may signify impaired antiviral defense or
altered immune tolerance at the maternal-fetal interface,
further contributing to the pro-inflammatory milieu. The
differential expression patterns of PRRs underscore the
complexity of immune dysregulation in pre-eclampsia and
highlight potential avenues for biomarker development and
targeted immunomodulatory therapies.

Another pregnancy complication of particular interest is
gestational diabetes mellitus (GDM). In the UK, approximately
5% of pregnant women have either pre-existing diabetes or GDM
with around 87.5% of those diagnosed during pregnancy having
GDM [30]. Early diagnosis and treatment of GDM are critical for
the safe progression of the pregnancy and delivery, as well the
future health of mother and baby. GDM is known to be associated
with placental dysfunction; in most cases, the condition resolves
after delivery of the placenta. Central to its pathophysiology is a
state of chronic low-grade inflammation and immune
dysregulation at the maternal-fetal interface, which
compromises placental integrity and nutrient exchange.

Mechanistically, GDM placentas exhibit upregulated
expression of TLR4, the adaptor protein MyD88 and the
transcription factor NF-kB [31-34]. This signalling axis is a
canonical pathway in innate immunity, where TLR4 recruits

Immune Environment of the Placenta

MyD88 to initiate downstream signalling cascades.
MyD88 serves as a critical scaffold, facilitating the activation
of interleukin-1 receptor-associated kinases (IRAKs) and TNF
receptor-associated factor 6 (TRAF6), culminating in the nuclear
translocation of NF-xB [35]. Once activated, NF-kB drives the
transcription of pro-inflammatory cytokines (for example TNF-
a, IL-6, IL-1PB), chemokines, and adhesion molecules, fostering a
pro-inflammatory milieu within the placenta [36]. This
environment disrupts trophoblast differentiation, impairs spiral
artery remodelling, and alters insulin signalling pathways, further
exacerbating maternal insulin resistance [37]. Moreover,
heightened TLR4/MyD88/NF-kB signalling may contribute to
endothelial dysfunction and oxidative stress, both of which are
implicated in adverse pregnancy outcomes such as fetal
macrosomia, preterm birth, and increased risk of type
2 diabetes in offspring [38, 39]. Clinically, these insights
underscore the importance of early GDM screening and
targeted interventions, not only to manage glycaemic control
but also to modulate inflammatory pathways. Emerging
therapeutic strategies, including dietary modulation, anti-
inflammatory agents, and microbiome-targeted therapies, may
hold promise in attenuating placental inflammation and
improving maternal-fetal outcomes.

The Decidual Environment

The decidua is an immune cell-rich site and during the
establishment of pregnancy, the populations of immune cells
and their functions adapt to support the environment. These cells
include uterine Natural Killer (uNK) cells, macrophages
(including Hofbauer cells), T cells and dendritic cells (DCs)
(Table 2). Functional adaptations of immune cells (compared
to function in the non-pregnant situation) are observed during
early pregnancy, alongside the unique expression of Human
Leukocyte Antigen (HLA) molecules by fetal extravillous
cytotrophoblast.

Unlike most somatic cells, extravillous trophoblasts do not
express classical MHC class I molecules HLA-A, HLA-B, nor the
class I HLA-D molecule. Instead, they selectively express HLA-
C, HLA-E, HLA-F and HLA-G [40], which are pivotal in shaping
the maternal-fetal immune interface. HLA-C, like -E, -F and -G is
expressed on the surface of extravillous cytotrophoblast [41],
HLA-E and -F show strong expression in the first trimester [40].
HLA-E is frequently co-expressed with HLA-G [42] and binds to
NKG2A and NKG2C receptors on uNK cells and yoT cells,
modulating their activity. HLA-F, although less understood,
fluctuates during the menstrual cycle and peaks during the
implantation window. It correlates with CD56" NK cell
density and may influence implantation success through
receptor interactions and genetic polymorphisms that affect its
expression.

HLA-G exhibits robust expression throughout gestation and
has emerged as a central regulator of immune tolerance. It exists
in both membrane-bound and soluble forms and is robustly
expressed throughout gestation, not only by extravillous
trophoblasts but also by Hofbauer cells, endothelial cells of
chorionic villi, amniotic cells, and the umbilical cord
epithelium [40, 43]. Recent findings show that HLA-G
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TABLE 2 | Summary of decidual immune cells.

Immune Environment of the Placenta

Trimester  Cell Type Role References
1 uNK uNK1 and uNK2 accumulate in the first trimester [56, 57]
Trophoblast-uNK cell interactions lead to a suppression on activation [55]
Macrophages M1 (inflammatory) type dominates [67, 156]
Hofbauer cells produce factors promoting angiogenesis [72]
T cells Th1 cells dominate during the implantation window [88]
CD8" Tc cells make up 45% of the decidual leukocyte population [157]
2 uNK Loss of trophoblast-uNK interaction [55]
Activating receptor expression increased
Macrophages M2 (anti-inflammatory) type dominates [67, 156]
T cells Th2 cells and tregs dominate [88]
CD8* T cell numbers increase in the decidua throughout pregnancy, they exhibit a silenced phenotype (compared to [96]
peripheral cells)
3 uNK Increased degranulation response, less recognition of HLA-C [158]
Macrophages M1 (inflammatory) type dominates [67, 156]
T cells High number of Tfh cells [159]
CD8* T cell numbers increase in the decidua throughout pregnancy, they exhibit a silenced phenotype (compared to [96]

peripheral cells)

uNK; uterine Natural Killer cell; Th, T helper; Tc, Cytotoxic T cell; HLA, Human Leukocyte Antigen; Tth, T follicular helper.

interacts with inhibitory receptors such as ILT2, ILT4, and
KIR2DL4 on uNK cells, leading to suppression of cytotoxic
activity and promotion of growth factor secretion that
supports placental development [44-46]. Moreover, HLA-G
has been implicated in activating senescence signaling
pathways in NK cells, which contributes to spiral artery
remodeling, a process essential for adequate placental
perfusion [47-49].

Importantly, recent research highlights that decidual y8T cells,
a less-studied immune subset, express receptors for HLA-E and
HLA-G and produce both angiogenic factors (e.g., G-CSF, FGF2)
and cytotoxic mediators (e.g., Granulysin, IFN-y) [50, 51],
suggesting a dual role in placental development and pathogen
defense. These findings challenge the traditional view of immune
suppression during pregnancy and suggest a more nuanced
model of immune modulation and functional specialization.
The selective expression of non-classical HLA molecules by
EVTs is not merely a passive shield against maternal immune
attack. It actively orchestrates a complex interplay of immune
tolerance, vascular remodeling, and tissue growth, processes that
are increasingly understood through advances in molecular
immunology and reproductive biology.

Uterine NK (uNK) Cells

In the first trimester decidua, uNK cells are abundant. uNK cells
differ significantly from peripheral blood NK cells. The majority
of uNK cells are defined as CD56™8"CD16 CD3"~ [52-54].
Throughout pregnancy the function of these cells change.
Interestingly, uNK cells accumulate near to extravillous
cytotrophoblast in the first trimester, and less so in the second
trimester [55]. Until fairly recently, it was thought uNK cells were
a single population of cells. It has now been recognised that there
are three distinct population [10], generally named uNKl,
uNK2 and uNK3. These subpopulations differ on the basis of
their chemokine and immunomodulatory properties and are
present at different times of gestation. uNK1 and uNK2 are

most abundant in the first trimester, however by the third
trimester, uNK3 are the dominant population [56, 57]. Given
this pattern, it is not surprising that uNK1 and uNK2 are
considered to play important roles in implantation [57], in
particular they are considered to be important in the process
of spiral artery remodelling [54]. Indeed, uNK cells make up 30%
of the immune cell population during the implantation window,
and then in early pregnancy, they make up 70%-80% of the
immune cell population in the decidua [54, 58, 59].

In addition to these pregnancy-supportive roles, uNK cells also
play roles in resistance to infection and immune tolerance of the
fetus. uNK cells lack cytotoxicity [60, 61] and the inhibition of
degranulation is mediated through the Gal-9/Tim-3 signalling
cascade [62]. The interaction between uNK cells and trophoblast
cells is key for development of immune tolerance. It is
hypothesized that these cellular interactions lead to a
reduction in uNK cell function [55]. Interestingly, recent
meta-analysis investigating the relationship between uNK cells
and recurrent miscarriage and recurrent implantation failure has
challenged earlier assumptions that elevated uNK cell numbers
are directly pathogenic. While no consistent correlation was
found between uNK cell quantity and pregnancy outcomes, a
more nuanced picture has emerged regarding uNK cell
phenotype and receptor expression. Several studies report that
women with recurrent miscarriage have uNK cells with lower
expression of inhibitory receptors such as KIR2DLI,
KIR2DL4 and NKG2A [63]. These receptors are critical for
recognising non-classical HLA (e.g, HLA-G and HLA-E)
expressed by extravillous trophoblasts, and their engagement
typically suppresses cytotoxic responses while promoting
vascular remodeling and immune tolerance.

Diminished expression of these inhibitory receptors may
impair the immunomodulatory dialogue between uNK cells
and trophoblasts, leading to inadequate spiral artery
remodeling, heightened local inflammation, or inappropriate
immune activation against fetal antigens. This receptor-level
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dysfunction underscores that functional competence, rather than
cell abundance, is a more reliable marker of uNK cell contribution
to pregnancy success. It also highlights the importance of
maternal-fetal HLA-KIR compatibility, which has been linked
to preeclampsia and fetal growth restriction in other studies [64,
65]. Clinically, these findings suggest that immunophenotyping
of uNK cells, especially receptor profiling, may offer more
predictive than simple cell counts in assessing
reproductive risk. It also opens avenues for targeted
immunotherapies aimed at restoring receptor expression or
modulating NK cell function in women with unexplained
recurrent miscarriage or recurrent implantation failure.

value

Macrophages

Macrophages are vital players at the maternal-fetal interface in
the induction of tolerance, defence against pathogens and
establishment of pregnancy. As key players of the innate
immune system, they have crucial roles in the initial stages of
immune responses, however our understanding of these cells has
grown in recent years, and we now have a better appreciation of
the complexity of this cell types, including the existence of
subtypes, dependent on the local environment and cytokine
milieu in which these cells find themselves. Traditionally
classified into pro-inflammatory M1 and anti-inflammatory
M2 subsets, this binary framework has proven overly
simplistic. Recent advances in single-cell RNA sequencing
have revealed a spectrum of macrophage phenotypes, shaped
by the dynamic cytokine milieu and tissue-specific signals of the
decidua [10, 66]. These studies show that decidual macrophages
co-express markers of both M1 and M2 states, suggesting
functional plasticity rather than fixed polarisation. This
heterogeneity enables macrophages to simultaneously support
trophoblast invasion, regulate inflammation, and maintain
immune homeostasis, underscoring their nuanced role in
reproductive immunology.

Within the decidua, the balance across the M1 and
M2  phenotype changes throughout pregnancy, with
inflammatory M1 dominating the early stages to aid in the
process of implantation, M2 dominating the mid stages to
ensure maintenance of pregnancy, and then a return to
M1 dominance at the point of parturition, where
inflammation helps drive uterine contractions [67]. It is likely
that these changes are driven by changes in pregnancy hormones
and their impact on the production on granulocyte macrophage
colony stimulating factor (GM-CSF) and macrophage colony
stimulating factor (MCSF) [67] which drives M1 and M2,
respectively. The importance of the balance between M1 and
M2 is illustrated by studies which show that higher numbers of
M1 macrophages in the decidua are associated with
miscarriage [68, 69].

In the context of the placenta, we also have to mention the
importance of Hofbauer cells; macrophages (of fetal origin)
located around the placental villi [70]. These cells can be
detected in the placenta as early as 4 weeks post-conception
[71]. Studies of the first trimester placenta has revealed that
Hofbauer cells have a unique phenotype compared to other
macrophages; they do not express HLA-DR and they produce

Immune Environment of the Placenta

a number of factors (for example, IL-8 and MMP-9) which may
contribute to placentation, mainly angiogenesis and spiral artery
remodelling [72].

Dendritic Cells (DCs)

Dendritic cells (DCs) are professional antigen presenting
cells, which are viewed as crucial initiators of immune
responses through sampling antigen and presenting to
T cells within lymph nodes. Early flow cytometric studies
have shown that within the decidua, dendritic cells are located
throughout both the decidua basalis and decidua parietalis
[73]. Generally, the decidua contains a greater number of
conventional DCs, and less plasmacytoid DCs than peripheral
blood [74]. One way in which DCs contribute to the tolerance
of paternal antigens, and therefore the fetus, is by entrapment
within the decidua [75]. That is, DCs within this tissue do not
leave to present to T cells at lymph nodes and initiate
immune responses.

Building on the current understanding of decidual DCs,
recent findings have begun to challenge and refine long-held
assumptions about their role in pregnancy. While entrapment
within the decidua has been proposed as a mechanism for
promoting tolerance, emerging evidence suggests that this
may not be a universal feature, particularly in pathological
contexts such as recurrent spontaneous abortion, where DCs
exhibit a more activated phenotype. For example, recent studies
have shown that in some cases of recurrent spontaneous
abortion, women have DCs with increased expression of
MHC Class II, CD80 and CD86 [76]. This raises important
questions about the plasticity and regulation of DC function in
situ. Moreover, the discovery that DCs contribute to stromal cell
differentiation in murine models expands their role beyond
immune modulation, suggesting a dual function in both
immunological and  structural aspects of placental
development [77]. However, the precise signalling pathways
mediating these interactions, such as the involvement of TGF-§,
Wnat, or Notch signalling, remain poorly defined [78, 79]. There
is also a lack of consensus on how DC subsets are influenced by
the decidual microenvironment, and whether these changes are
reversible or developmentally programmed. These gaps
underscore the need for integrative approaches, including
spatial transcriptomics and functional assays, to dissect the
context-dependent roles of DCs and their contribution to
both tolerance and tissue remodelling.

T cells

There are numerous types of T cells with differing functions and
identified by their unique surface expression of certain markers,
transcription factors and cytokine production. Cytotoxic T cells
(Tc) are defined as CD3*CD8" and T helper (Th) cells are
identified generally as CD3'CD4" and can be further
subcategorised into Thl, Th2, Th17, T regulatory (Treg),
Th9 and Follicular T helper (Thf) cells.

Th cells undoubtedly play important roles during the
preimplantation phase, with the balance between the
different Th subsets crucial for early pregnancy success.
Implantation is described as an inflammatory process, and
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with the dominance of inflammatory M1 macrophages at the
site of implantation, a dominance in Thl type cells is also
observed. Thl cells typically produce cytokines such as
tumour necrosis factor (TNF)-a and interferon (IFN)-g.
While these are potent inflammatory cytokines, studies have
shown during implantation they contribute to the control of
trophoblast invasion and mobility [80, 81], however aberrant
systemic expression of these Thl-associated cytokines is
associated with implantation failure and miscarriage [82, 83].
Interestingly, Th17 cells follow a similar pattern to Thl cells.
During early pregnancy, Th17 cells are recruited to the decidua
by decidual stromal cells through the release of the chemokine
CCL2 [84]. It has been hypothesized that they function to
inhibit trophoblast apoptosis [84]. As with circulating
Thl cells and cytokines, Th17 cells and IL-17 have been
linked with PE [85, 86]. Research suggests that pre-eclampsia
is associated with an imbalance between Th17 cells and
regulatory T cells (Tregs), leading to excessive immune
activation at the maternal-fetal interface. Increased levels of
memory-like Th17 cells is found in pre-eclamptic placentas,
suggesting their involvement in disease progression [87].

The maintenance of pregnancy is associated with a dominance
in Th2 cells and Tregs [88-90] and a downmodulation in
Th17 cells. Th2 cells are characterised by the production of
the cytokines IL-3, -4, -5 and -13, and at the maternal-fetal
interface, these cytokines are associated with pregnancy success
[91]. These Th2 cytokines, including IL-4, IL-5, IL-10, and IL-13,
contribute to immune modulation by reducing cytotoxic T-cell
activity and promoting regulatory mechanisms that support fetal
survival. Additionally, Th2-driven immunity facilitates the
development of maternal-fetal tolerance through interactions
with regulatory T cells (Tregs).

Tregs are indepensable for the maintenance of pregnancy,
primarily through their role in dampening the maternal
immune response against fetal antigens. This balanced
immune adaptation ensures successful implantation and
placental development. Seminal studies using murine
models have demonstrated that depletion of Tregs during
early gestation leads to fetal resorption and pregnancy
failure, underscoring their crucial function for the
maintenance of pregnancy through controlling immune
reactivity at the maternal-fetal interface [92, 93]. Indeed,
more recent studies have shown that the absence of Tregs
leads to rejection of the fetus. More recent investigations have
employed single-cell RNA sequencing to reveal that decidual
Tregs undergo transcriptional reprogramming in response to
local cues, acquiring a tissue-adapted effector phenotype [64,
94]. For instance, decidual Tregs upregulate genes associated
with tissue residency (e.g., CD69, CXCR3) and immune
regulation (e.g., IL10, CTLA4), distinguishing them from
their peripheral counterparts [94]. Collectively, findings
from murine depletion models, human tissue profiling, and
transcriptomic analyses highlight the dynamic and context-
dependent nature of Tregs in pregnancy. Their ability to adapt
phenotypically and functionally to the decidual niche is
central to preventing fetal rejection and ensuring
gestational success.

Immune Environment of the Placenta

Given their cytotoxic role in the immune response, it is
interesting to consider that CD8" Tc cells are the most
abundant T cells at the decidua [95]. Extravillous
cytotrophoblasts do not express HLA-A and HLA-B,
however they do express HLA-C which is a potential
candidate for CD8" Tc cell recognition. However, in
successful pregnancies, this recognition and downstream
cytotoxic action does not occur [95]. Analysis of the CD8"
Tc cell populations within the decidua have shown that
compared with peripheral CD8" Tc cells, the decidua
contains populations that have a phenotype resembling
effector memory cells, which only partial effector
functions [96].

PLACENTAL EXOSOMES AS
IMMUNOMODULATORS

Despite the first report of placental exosomes being published
some time ago [97], this is an area of placental research which has
gained momentum in recent years. Placental exosomes are being
investigated as biomarkers of maternal diseases as reviewed in
several publications [98-102] and for their potential use as non-
invasive diagnostic tools.

Exosomes are extracellular vesicles that originate from the
endosome of a cell, tend to be around 40-160 nm in diameter [99]
and can carry different molecule types such as proteins, lipids,
mRNA, non-coding RNAs and DNA fragments. In doing so,
exosomes act as a transport mechanism for genetic and protein
information between cells.

Placental exosomes are released through a multistep process.
Exosomes originate within endosomes, where they accumulate in
multivesicular bodies (MVBs). These MVBs contain small
vesicles that eventually become exosomes. Once matured,
MVBs fuse with the placental cell membrane, releasing their
contents into the extracellular space. The release of exosomes is
influenced by factors such as oxygen levels, glucose
concentration, and maternal stress [103]. These conditions can
alter the number and composition of exosomes secreted.
Exosomes are continually shed from the syncytiotrophoblast
into the mother’s bloodstream throughout pregnancy
[104-106], although their production is significantly increased
in the first trimester [107, 108]. Once in maternal circulation,
placental exosomes interact with immune and vascular cells,
influencing maternal physiology and fetal development.

Placental exosomes mediate immune tolerance during
pregnancy [109-112] through localised immune modulation
within the uterine and placental environments. They do this
through a number of mechanisms, some of which are
summarised in Figure 2. Placental exosomes can promote the
secretion of IFN-y and VEGF by uNK cells via HLA-E secretion
[113], reduce the expression of the NKG2D activating receptor on
cytotoxic NK cells [114], and modulating the differentiation,
activation and polarisation of decidual macrophages [115,
116]. Finally, placental exosomes have been shown to
downmodulate T cell proliferation and cytotoxity, and driving
Treg differentiation [117]; placental exosomes target and alters
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Regulation of T cells

Placental exosomes
contain microRNAs
(e.g. miR-519d-3p),
which can promote T
cell proliferation and
influence
differentiation
towards Th17 cells,
disrupting immune
balance.

This imbalance is
linked to pregnancy
complications such as
pre-eclampsia.

Placental Exosomes

Monocyte
Reprogramming

Exosomes from the
placenta reprogram
maternal monocytes,
reducing their
activation and shifting
them towards an
immunosuppressive
phenotype.

This helps prevent
excessive immune
responses against fetal
antigens.

Induction of Immune
Tolerance

Placental exosomes
carry molecules (e.g.
Fas ligand and TRAIL)

which can induce
apoptosis in activated
immune cells.

This mechanism
ensures immune

privilege for the fetus.

Immune Environment of the Placenta

Impact on Antigen
Presentation

Exosome-educated
monocytes show
reduced expression of
genes involved in
antigen processing
and T cell activation.

This limits maternal
immune responses
against fetal antigens.

FIGURE 2 | Immunomodulation by placental exosomes. Placental-derived exosomes can have a number of impacts on the immune system. This figure highlights
some of these key immunological interactions [117, 118, 146]. This figure was created in part using BioRender.com.

the activity of monocytes to influence these impacts on
T cells [109, 118].

Placental exosomes are increasingly recognized as key players
in pregnancy complications. These extracellular vesicles carry
bioactive molecules that influence maternal physiology, and their
altered composition can signal pathological conditions. For
example, exosomes from pre-eclamptic placentas show
dysregulated microRNA profiles, affecting vascular function
and immune responses [104]. Placental exosomes have also
been implicated in the pathogenesis of GDM. Placental
exosomes in GDM pregnancies contain molecules that alter
insulin sensitivity, contributing to metabolic imbalances [119].
Exosomes from compromised placentas may impair nutrient
transport, affecting fetal development [120] and changes in
exosomal cargo can influence inflammatory pathways,
potentially triggering premature labour [121]. These findings
suggest that placental exosomes could serve as biomarkers for
early detection of pregnancy complications and may even be
targeted for therapeutic interventions [122].

British Journal of Biomedical Science | Published by Frontiers

PLACENTAL EXPOSURE TO INFECTION

Infections are a threat to the survival of both mother and fetus and
there are a number of ways in which an infection could cause
damage, by impacting the mother’s health, the fetus’ health or the
functioning of the placenta. The placenta utilizes mechanisms,
where possible, to limit the vertical transmission of pathogen from
mother to fetus. There are, however, some infections which can
bypass the placental barrier to cause congenital infection. These are
the TORCH infections: Toxoplasma gondii, other, rubella virus,
cytomegalovirus, herpes simplex virus. These infections induce
immune responses within the placenta which are often damaging
to it, leading to placental dysfunction in addition to vertical
transmission of the pathogen. In the UK, the TORCH
infections are diagnosed using a combination of serological tests
and direct pathogen detection methods; (1) Blood tests check for
antibodies (IgM and IgG) against TORCH pathogens, helping
determine past exposure or active infection, (2) polymerase chain
reaction (PCR) assays detect viral DNA or RNA, particularly useful
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for CMV and HSV, (3) imaging and amniotic fluid analysis help
assess fetal health and detect congenital infections, and (4) Infants
suspected of congenital infection undergo blood tests, hearing
assessments, and ophthalmologic exams.

Toxoplasma gondii (T. gondii)

T. gondii infection in the immunocompetent is usually
asymptomatic, but presents with flu-like symptoms in ~20% of
cases and is self-limiting [123]. Congenital toxoplasmosis is
caused by the transmission of live parasites through the
placenta to the fetus. This tends to occur only when primary
infection is acquired during pregnancy; prior infections generates
sufficient control of the infection to prevent transmission.
Control of T. gondii infection involves a robust Thl type
response [124], which is in contrast with the Th2-type
environment that dominates within the placenta. This
therefore means the placenta presents an environment in
which the parasite will thrive. Generation of a Thl type
immune response to control the parasite is detrimental to the
placenta. One way in which T. gondii tachyzoites gain entry to the
decidua is by the “trojan horse” theory where the parasite “hides”
in immune cells [125]. It is also thought that tachyzoites infect

invading extravillous cytotrophoblast and the
syncytiotrophoblast layer [126].
In the context of UK clinical practice, congenital

toxoplasmosis remains a significant concern due to its
potential for severe fetal outcomes, including hydrocephalus,
chorioretinitis, and intracranial calcifications. Routine
antenatal screening for T. gondii is not currently implemented
in the UK, unlike in some European countries such as France and
Austria, where early detection allows for timely intervention.
Diagnosis typically relies on serological testing following clinical
suspicion or ultrasound findings suggestive of fetal infection.
When maternal infection is confirmed during pregnancy,
spiramycin is often initiated to reduce transplacental
transmission, although its efficacy is limited to early gestation
and it does not treat established fetal infection. In cases where
fetal infection is confirmed, usually via amniocentesis and PCR,
pyrimethamine and sulfadiazine are considered, despite their
teratogenic and hematologic risks [102, 127]. These limitations
underscore the need for improved diagnostic tools and safer
therapeutic options. Furthermore, the immunological paradox of
requiring a Thl response to control T. gondii, despite its
incompatibility with the placental Th2-dominant environment,
poses a challenge for immunomodulatory strategies. Greater
awareness among clinicians is essential for timely diagnosis
and management.

Rubella

Rubella is a rare viral infection which causes mild or no
symptoms in most people, however, if contracted during
pregnancy, can lead to miscarriage, stillbirth or development
of fetal defects. Early studies have shown that rubella infection
during pregnancy presented a number of impacts on the placenta,
including a reduction in placental weight, villitis and disruption
to the villous architecture [128]. In 90% of cases, Congenital
Rubella Syndrome occurs during the first 8 weeks of pregnancy,

Immune Environment of the Placenta

with ~30% occurring in the second trimester [129]. Infection of
trophoblast cells is associated with production of the type I
interferons [130], and the proinflammatory chemokine
CCL5 [131] which can be detrimental to the placental
environment through driving inflammation as well as
trophoblast migration and invasion, potentially disrupting
placental development [132].

In UK clinical practice, rubella is now exceedingly rare due to
the success of the national MMR (measles, mumps, rubella)
vaccination programme, which offers protection to children
and is routinely checked in women of childbearing age [133].
However, sporadic cases still occur, particularly among
individuals born outside the UK or those with incomplete
vaccination records. When rubella infection is suspected
during pregnancy, urgent serological testing is performed to
assess maternal immunity and confirm recent infection. If
primary infection is confirmed in early pregnancy, referral to
fetal medicine specialists is essential due to the high risk of
Congenital Rubella Syndrome, especially in the first trimester.
Ultrasound monitoring may reveal signs of fetal compromise, and
parents are counselled regarding prognosis and management
options. The immunopathological findings, such as placental
inflammation and disrupted trophoblast function, highlight the
importance of preconception vaccination and robust antenatal
screening protocols. Public health efforts continue to focus on
maintaining high vaccine uptake and identifying at-risk
populations.

Human Cytomegalovirus

As was described for T. gondii and Rubella, human
cytomegalovirus can be harmless to those who are
immunocompetent, but dangerous for those who are

immunocompromised and in infants. As reported by Fisher
and colleagues, the placenta is not an effective barrier to
cytomegalovirus infection [134]. Placental cytotrophoblasts
and syncytiotrophoblasts possess receptors, such as integrin
alPl and integrin aVP3 which facilitate the transmission of
cytomegalovirus through the placenta [135]. Cytomegalovirus
is never eliminated by the body; it establishes latency within cells
of the myeloid lineage such as CD14" monocytes and can be
reactivated during inflammatory responses [136]. Studies have
shown that cytomegalovirus leads to the downregulation of HLA-
G expression by cytotrophoblast cells [134, 137]. It is
hypothesised that this is one way in which the immune system
tries to respond to the virus, by downregulating the tolerogenic
mechanism which protects the placenta.

In UK clinical practice, congenital cytomegalovirus infection is
the most common viral cause of neurodevelopmental disability
[138], yet routine antenatal screening is not currently
implemented. Diagnosis typically arises following ultrasound
findings suggestive of fetal infection such as ventriculomegaly,
intrauterine growth restriction, or echogenic bowel, or through
targeted maternal serology and PCR testing. When primary
cytomegalovirus infection is confirmed during pregnancy,
management is complex due to the lack of licensed antiviral
treatments proven safe and effective for fetal use. Valaciclovir has
shown some promise in reducing viral load and transmission risk,
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but its use remains off-label and limited to specialist settings
[139]. The immunological findings, such as viral exploitation of
placental integrins [135] and downregulation of HLA-G [134,
140], highlight the challenges in balancing maternal immune
tolerance with antiviral defence. These mechanisms may help
explain why cytomegalovirus can cross the placenta even in
immunocompetent individuals. Greater awareness among
clinicians, improved diagnostic pathways, and ongoing
research into maternal immunomodulation are essential to
reduce the burden of congenital cytomegalovirus in the UK.

Herpes Simplex Virus (HSV)

Herpes Simplex Virus (HSV) is a double-stranded DNA virus
that is responsible for genital and oral herpes. There are two main
viral serotypes, HSV-1 and HSV-2, with the latter described as the
most commonly sexually transmitted infection [141].
Transmission of HSV can occur through the vagina/cervix or
via the placenta, and can occur at any stage of pregnancy [142]. As
reported by Deftereou and colleagues [142] the mechanism by
which the virus transmits through the placenta is debatable,
however, it has been reported that damage to the
syncytiotrophoblast layer is required to allow viral entry [126].
Placental infection results in chronic inflammation, with
histopathological studies showing lymphocytic infiltration into
the villous tree [143].

In UK clinical practice, neonatal herpes simplex virus (HSV)
infection is rare but carries a high risk of morbidity and mortality,
particularly when acquired intrapartum or via transplacental
transmission. Routine antenatal screening for HSV is not
currently recommended, but clinical vigilance is essential,
especially in women with a history of genital herpes or
presenting with active lesions during pregnancy. Management
involves suppressive antiviral therapy, typically acyclovir, from
36 weeks gestation to reduce viral shedding and the risk of
transmission during vaginal delivery [144]. In cases of primary
infection in late pregnancy, or active lesions at term, elective
caesarean section is considered to minimise neonatal exposure.
The histopathological findings of placental inflammation and
syncytiotrophoblast disruption highlight the importance of early
recognition and intervention, particularly in symptomatic
women or those with known HSV seroconversion during
pregnancy. Neonatal HSV infection, when suspected, prompts
urgent virological testing and initiation of intravenous aciclovir,
with multidisciplinary input from obstetrics, neonatology, and
infectious disease teams to guide care and reduce long-term
neurological sequelae [145].

CONCLUSION

The placenta is an extraordinarily complex and dynamic organ
that performs a multitude of essential functions throughout
gestation. Beyond its well-known roles in nutrient transfer, gas
exchange, and hormone production, the placenta serves as a
critical immunological interface between the mother and fetus.
One of its most remarkable capabilities is its ability to
simultaneously promote immune tolerance toward the semi-

Immune Environment of the Placenta

allogeneic fetus (bearing paternal antigens) while maintaining
robust defences against invading pathogens. This immunological
balancing act has profound implications for antenatal care,

particularly in the context of infection screening,
immunological monitoring, and the management of
pregnancy-related complications such as preeclampsia,

intrauterine growth restriction, and recurrent miscarriage.

To achieve this balance, the placenta must develop in a
manner that supports fetal growth and survival while evading
maternal immune rejection. This involves a highly orchestrated
interplay of cellular and molecular mechanisms, including the
recruitment and regulation of immune cells within the decidua;
the specialized maternal tissue at the maternal-fetal interface.
This review has highlighted key populations of decidual immune
cells, such as uNK cells, macrophages, and Tregs, which are
present in high abundance and play pivotal roles in modulating
immune responses. Additionally, the expression of PRRs,
including TLRs and NOD-like receptors, enables the placenta
to detect and respond to microbial threats, thereby contributing
to its innate immune surveillance system.

This review also provided an updated overview of infections that
pose significant risks during pregnancy and considered how placental
immune responses can influence vertical transmission and fetal
outcomes. As research continues to elucidate the molecular
pathways by which the placenta modulates immune responses to
paternal antigens and microbial stimuli, new opportunities are
emerging to translate these insights into clinical practice. For
instance, a deeper understanding of placental immunology could
inform the development of targeted fertility treatments, optimize
protocols for assisted reproductive technologies, and refine
immunosuppressive ~ strategies in organ transplantation by
leveraging mechanisms of maternal-fetal tolerance.
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