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Tablets are the most commonly used dosage form due to their low manufacturing cost and
ease of administration. Incorporating mesoporous silica microparticles offers enhanced
control over drug release and bioavailability; however, formulation remains challenging due
to poor compressibility and disintegration characteristics. This study explores dynamic
formulation strategies to enable successful incorporation of SYLOID XDP 3150 (SYLOID)
into oral tablet formulations. Tablets were prepared via direct compression using varying
ratios of Avicel PH 102 (MCC: microcrystalline cellulose) and lactose monohydrate (25:75,
50:50, and 75:25) with SYLOID incorporated at 0%, 20%, and 40% (w/w). A 500 mg tablet
mass was maintained throughout, and SYLOID alone was also compressed to assess
baseline behaviour. Key tablet properties including porosity, tensile strength, friability, and
disintegration time were evaluated. Direct compression of SYLOID alone failed due to poor
compactability and particle fragmentation at 221.72 MPa. Increased Avicel content led to
reduced porosity and enhanced tensile strength, while higher SYLOID levels increased
porosity but compromised mechanical strength and friability. Disintegration was faster in
lactose-rich formulations but delayed with increased SYLOID due to its hydrophobicity.
Incorporating a superdisintegrant and binder enabled the final formulations to meet USP
requirements for disintegration and friability. Overall, SYLOID was shown to significantly
affect tablet architecture and performance, necessitating excipient support to overcome its
inherent limitations. These findings support further evaluation of drug-loaded SYLOID
tablets to assess their impact on drug release profiles and oral bioavailability.

Keywords: mesoporous silica, microparticles, SYLOID, tablets, porosity

INTRODUCTION

Tablets are among the most widely utilised drug delivery systems (DDS) due to their simple and cost-
effective production, particularly via direct compression (DC). However, despite its efficiency, DC is
employed in fewer than 20% of pharmaceutical formulations, as both active pharmaceutical
ingredients (APIs) and excipients must possess adequate compactability and compressibility for
successful tabletting. As a result, different carriers and additives are frequently included in the
powder blend to enhance tablet characteristics [1-3].

Silica has gained increasing prominence in pharmaceutical formulations owing to its
biocompatibility, chemical inertness, and favourable safety profile [4-8]. It enhances
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compactability by increasing surface roughness, thereby
improving interparticle bonding strength [9]. Nanoscale
colloidal silica is widely used to improve powder flow by
coating excipient surfaces, reducing interparticle friction, and
minimising electrostatic interactions [10]. Silica microparticles
also function effectively as glidants, helping to prevent sticking to
tablet punches, while nanosilica contributes to improved
tabletting by promoting particle rearrangement under pressure
and reducing cohesion between particles [11-13].

The proportion of mesoporous silica in tablet formulations is a
critical determinant of performance. Although small amounts
(<1%) function well as glidants, higher concentrations may
introduce cohesive forces that hinder powder flow and
compromise compressibility [14]. However, the high porosity
of mesoporous silica nanoparticles (MSNs) facilitates enhanced
water uptake and volume expansion, which generate internal
pressure to accelerate tablet disintegration. The low density and
submicron size of MSNs ensure intimate contact with the
dissolution medium, promoting rapid breakup of the tablet
matrix [15, 16].

Compression forces also significantly influence the
morphological properties of silica-based excipients. At elevated
pressures, the porous architecture of silica can collapse, especially
in the absence of plastic excipients such as microcrystalline
cellulose (MCC) [17]. This mechanical stress may result in the
fracturing of surface structures, reducing surface area and pore
volume, key attributes for drug loading as they determine the
available space for drug molecules to be adsorbed and
encapsulated [18]. The nature of diluents used plays an
essential role in mitigating these effects: MCC, being plastically
deformable and insoluble, prolongs disintegration but protects
silica pores, whereas lactose, which is water-soluble, supports
faster disintegration due to its solubility and weak binding
properties [19-21]. MCC also dissipates compression energy,
preserving the structural integrity of porous carriers [18, 22].

Silica particle size is another factor influencing compactability
and mechanical strength. Smaller silica particles tend to form
more extensive interparticle bonds, enhancing tablet hardness
[23, 24]. The specific type of silica also impacts final tablet
properties: magnesium aluminosilicates generally produce
harder tablets due to strong interparticle cohesion, while
silanol-rich carriers such as SYLOID exhibit lower mechanical
strength but benefit from greater disintegration potential due to
improved wetting and pore channel formation [24-26].

This study aims to develop mesoporous silica microparticle
tablets for oral delivery, focusing on the critical factors that
influence their tabletting process and physical performance.
“SYLOID XDP 3150 (referred to hereafter as SYLOID) is a
commercially available grade of large-pore mesoporous silica,
composed of irregularly shaped microparticles, known for its high
surface area and suitability as a pharmaceutical excipient, was
specifically selected for its high surface area, large particle size,
and suitability for drug adsorption and controlled release
applications. Its large particle size makes it distinct from the
nanoscale silica materials commonly studied, offering potential
advantages in handling and flow but also presenting unique
compression challenges. While previous studies have broadly
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examined mesoporous silica in tablet formulations, the direct
compression of mesoporous silica microparticles, particularly
SYLOID XDP 3150 has not been systematically reported. This
work addresses that gap by evaluating how compression forces
affect the morphological integrity of SYLOID during tabletting, a
factor often overlooked in silica-based tablet development. By
systematically analysing the interactions between silica content,
diluent ratio, and compaction pressure, this research aims to
optimise tablet performance and provide a promising platform
for the future development of drug-loaded formulations aimed at
improving oral bioavailability.

MATERIALS AND METHODS

Materials

Mesoporous silica microparticles SYLOID XDP 3150 were kindly
provided by W.R. Grace and Co (Worms, Germany). Lactose
monohydrate 316 fast flow was purchased from Foremost Farms
(USA). Avicel PH-102 was kindly provided by FMC
(Philadelphia, USA). Polyvinylpyrrolidone (PVP) average Mw
40.000 was purchased from Fisher Scientific (Belgium).
Magnesium stearate (3.8%-5% Mg) was purchased from Acros
Organics (Netherlands). Croscarmellose sodium was purchased
from Spectrum Chemicals (UK).

Methods

Morphological Properties

Imaging of the SYLOID particles was conducted using the
Environmental Scanning Electron Microscope (SEM) mode of
the ThermoFisher Scientific Quattro S microscope equipped with
a field emission filament (FEG). The images were taken in low
vacuum mode in variable pressure between 85 and 105 Pa, with
an acceleration voltage of 3 kV and 3-3.5 spot size.

Particle Size Analysis Using Laser Diffraction

Particle size distribution of SYLOID, both in its original and
compressed forms, was evaluated using laser diffraction
(Sympatec GmbH, Germany). The system included a VIBRI
vibratory feeder, a RODOS/L dry dispersion unit, and a
HELOS/BR laser diffraction sensor. An R3 Fourier lens (focal
length = 100 mm), with a detection range of 0.5-175 pm, was
employed. Samples were dispersed at 1 bar pressure under
vacuum (22 mbar), with a feed rate of 50% and optical
concentration maintained at >1%. Data acquisition and
particle size distribution analysis were performed using
PAQXOS 5.0 software. All measurements were conducted in
triplicate to ensure reproducibility.

Tablet Formulation: Influence of Powder Composition
and Silica Content on Tablet Properties

To investigate the influence of powder composition on tablet
performance (including assessments of hardness, disintegration
time, and friability), blends were prepared using varying ratios of
microcrystalline  cellulose (Avicel PH102) and lactose
monohydrate (25:75, 50:50, and 75:25, w/w). SYLOID was
incorporated at concentrations of 0%, 20%, and 40% w/w
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relative to the total tablet weight. Following homogenisation,
magnesium stearate (1% w/w) was added as a lubricant and
mixed for an additional 5 min. Tablets (500 mg, 13 mm diameter,
flat-faced) were compressed using a Power 8T automatic press
(Specac, UK) equipped with a 13 mm evacuable pellet die. A
compression pressure of 221.72 MPa was applied, and 30 tablets
were produced per batch.

Tablet Formulation: Influence of Binders and
Disintegrants on Friability and Disintegration

To address issues of excessive friability, polyvinylpyrrolidone
(PVP) was added as a binder at 5% w/w to the SYLOID-
diluent powder blend. The mixture was blended for 5 min,
followed by the addition of magnesium stearate (1% w/w).
Additionally,  croscarmellose  sodium (CMC-Na) was
incorporated at 2% w/w as a superdisintegrant in selected
formulations containing varying SYLOID concentrations and
avicel:lactose ratios. Tablets were prepared using the same
procedure as described above, with consistent tablet weight
(500 mg) and geometry (13 mm flat-faced) across all
formulations.

True Density

The true desnity was measured using helium pycnometry, the
instrument was Multipycnometer from Quantachrome
(Syosset, USA). One tablet with the weight of 0.5 g was put
in micro sample cell and the true volume V. was calculated
based on Archimedes principle of fluid displacement, while
the fluid is the helium gas that is able to penetrate the porous
structure of the tablet to the pores of an 107'° m of size, and is
inert towards materials at normal temperatures [27]. The true
volume V, was calculated using the following equation:

V[:VC—VR (PI/PZ—I)

Where V. is the sample cell volume (11.6029), Vg is the
reference volume (6.2581), P; is the atmospheric pressure, and
P, is the pressure change. V1 will be used to calculate the true
density of the tablet according to the following equation:

True density = Tablet weight/True volume
The porosity of the tablet is calculated using this equation:
Porosity = [1 - (Bulk density/True density)]* 100
The bulk density is calculated through:
Bulk denisty = Tablet weight/Volume

The volume is the tablet can be calculated considering that is
takes the shape of a cylinder using:

Volume = n*r? *h

Where r is the radius, and h is the tablet’s thickness.

Tablet Hardness
Tablet hardness was determined using a Copley TBF 1000 Tablet
Hardness Tester (Copley Scientific, UK), which was calibrated
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prior to analysis. For each formulation, three tablets were tested.
The tensile strength (o) was calculated using the
following equation:

2% hardness
T ntd*h

Where o is the tensile strength, d is the tablet diameter, and h is
thickness of the tablet. All Measurements were done in triplicate
and values reported as mean + SD.

Tablet Disintegration

Tablet disintegration time was assessed using the DTG 100i
Disintegration Tester (Copley Scientific, UK) equipped with a
USP basket apparatus operating at 30 cycles/min. The
medium was distilled water maintained at 37 ‘C + 2 °C
using a temperature control unit. One tablet was placed per
basket, and three tablets per batch were tested. Disintegration
time was recorded when all fragments passed
through the mesh.

Tablet Friability

Tablet friability was evaluated using a Sotax F2 Friabilator (USP)
from J. Engelsmann AG (Ludwigshafen, Germany). Twenty
tablets were weighed before testing and rotated in the drum at
25 rpm for 4 min. Afterward, the tablets were carefully dusted to
remove excess powder, and friability was calculated using the
following equation:

(weightbefore - weightafetr)/ Weightbefore *100

Statistical Analysis

Statistical analyses of data were performed with SPSS 28 program
by using one-way Analysis of Variance (ANOVA) coupled with a
Tukey post-hoc test. All experiments were conducted in triplicate.
All data was presented as mean * SD, and P-value <0.05 is
considered statistically significant.

RESULTS

Tablet Compaction Trials Using SYLOID as

a Standalone Excipient

Tablet compaction trials were conducted to evaluate the
compressibility and mechanical integrity of SYLOID as a
standalone excipient. Tablets were compressed at three
different pressures: 73.91 MPa (equivalent to 1 ton force),
147.82 MPa (2 tons), and 221.72 MPa (3 tons). At the two
lower pressures (73.91 MPa and 147.82 MPa), SYLOID
powders failed to produce coherent tablets, indicating poor
plastic deformation and bonding under compression. This
failure can be attributed to SYLOID’s physicochemical
characteristics, including its large irregular particle
morphology, low bulk density, and inherent brittle nature.
Such characteristics inhibit the formation of strong
interparticulate  bonds that are essential for tablet
consolidation during compression.
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FIGURE 1 | SYLOID tablet fragments after compaction at 221.72 MPa,
showing large aggregates and fine powder formed upon tablet ejection.

At the highest applied pressure of 221.72 MPa, tablets visually
appeared intact immediately after compression; however, these
compacts disintegrated into a fine powder upon ejection from the
die, demonstrating insufficient mechanical strength to withstand
post-compression handling. Despite this fragility, the compacts
allowed for preliminary morphological analysis of compressed
SYLOID particles. The chosen pressure of 221.72 MPa served as
the maximum achievable pressure to induce partial compaction
for characterisation purposes, as lower pressures failed to produce
tablets, and higher pressures risked damaging equipment or
producing unacceptable tablet properties.

Figure 1 illustrates the effect of compression on SYLOID
particles. Under 221.72 MPa, SYLOID particles underwent
significant fragmentation, compromising tablet integrity. As a
mesoporous silica carrier, SYLOID is primarily composed of
silicon dioxide (SiO,) with a porous internal network.
Compression leads to structural squeezing, where the
mesopores collapse under applied mechanical stress, adversely
affecting mechanical strength and potentially releasing adsorbed
or loaded compounds prematurely [28]. This structural
deformation is more pronounced in SiO,-based carriers
compared to aluminosilicate carriers, which generally show
improved compressibility and tablet hardness due to their
distinct chemical composition and microstructure [29].

Furthermore, SYLOID’s surface chemistry plays a role in its
compressibility. Surface silanol (Si-OH) groups provide
hydrophilicity but hinder the formation of strong interparticle
bonds required for tablet robustness, limiting mechanical
strength and hardness [26]. The poor plastic deformation
capacity of SYLOID means that during compression, particles
tend to fracture rather than deform plastically, resulting in
increased brittleness. Particle size distribution analysis
quantitatively confirmed these observations. The average
particle size of compressed SYLOID was measured at 34.69 +
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8.13 um, which was markedly smaller than the 117.3 + 0.56 um of
uncompressed powder. This size reduction reflects extensive
particle fragmentation during compression.

Scanning electron microscopy (SEM) images provided visual
evidence of these changes (Figure 2). Uncompressed SYLOID
particles (Figures 2A,B) appear as large, irregularly shaped
particles with relatively smooth surfaces devoid of cracks or
deformation. After compression, morphological changes are
evident: numerous surface cracks (highlighted in vyellow
circles) and fractured silica fragments (red circles) are visible
(Figure 2C). Detached debris was observed separately
(Figure 2D), suggesting brittle fracture behavior. These
findings are consistent with other studies demonstrating brittle
fragmentation of mesoporous silica under compressive stress,
leading to powder fines formation and reduction in particle
integrity [24].

Design of SYLOID-Based Tablets
With Diluents

Given the poor compressibility of SYLOID alone, it was essential
to investigate the effect of commonly used pharmaceutical
excipients on tabletability. Microcrystalline cellulose (Avicel
PH 102) and lactose monohydrate were selected as diluents
due to their complementary physical properties and
widespread use in direct compression formulations. Avicel PH
102 is known for its excellent plastic deformation and binding
properties, whereas lactose is a brittle, water-soluble sugar
excipient that facilitates disintegration.

Three different avicel:lactose ratios were prepared: 75:25, 50:
50, and 25:75 (w/w). SYLOID was incorporated at two
concentrations, 20% and 40% w/w of the total tablet weight,
with magnesium stearate (1% w/w) added as a lubricant. All
powders were thoroughly mixed to ensure homogeneity and then
compressed into 500 + 1 mg tablets using a flat-faced punch. This
experimental design allowed assessment of how varying excipient
proportions influence tablet porosity, disintegration, and
mechanical strength, particularly with respect to SYLOID
content. Table 1 summarises reports the values for the tests
conducted on the tablets.

Porosity Analysis of SYLOID-

Containing Tablets

Porosity is a critical parameter influencing tablet mechanical
properties and dissolution. Figure 3 depicts the porosity
values of the tablet formulations with varying diluent ratios
and SYLOID loadings. A clear pattern emerges: increasing
SYLOID content leads to increased tablet porosity across all
formulations, consistent with SYLOID’s low density and
porous nature.

Notably, tablets with 40% SYLOID at 25:75 avicel:lactose
disintegrated immediately upon ejection, precluding accurate
porosity measurement. These tablets were excluded due to
inadequate mechanical strength. Tablets with 40% SYLOID
and 75:25 avicel:lactose exhibited the highest porosity
(57.73% + 0.85%), significantly higher than SYLOID-free
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the carrier surface.

ag= pressure Y xie WD det 1 hus
M 200 x 1.00E-3Pa 3.00kV SE 9.9 mm ETD 3.0

FIGURE 2 | SEM imaging of SYLOID XDP 3150 at different magnifications showing the effects of compression force on the morphology of SYLOID particles before
and after compressing at 3 Tons; SYLOID before compressing identifying the intact particle morphology (A), powder population (B), SYLOID particles after compression
(C), and after compression for the powder population (D). The red circle represents the small fragments of SYLOID and the yellow present the cracks deformations on

TABLE 1 | Properties of tablets with varying avicel:lactose ratios and SYLOID concentrations, including disintegration, thickness, tensile strength, friability, and porosity.
Tablets with 40% SYLOID and a 25:75 avicel:lactose ratio were excluded due to brittleness and instant disintegration upon ejection.

Formulation Disintegration time (min) Thickness (mm) Tensile strength (MPa) Friability (%) Porosity (%)
avicel:lactose 25:75 1.92 £ 0.13 2.45 £ 0.01 15.85 + 0.64 1.38 £ 0.23 21.93 £ 1.02
SYLOID 20% avicel:lactose 25:75 13.97 £ 0.21 2.6 £0.07 8.07 + 0.33 5.46 + 2.62 40.22 £ 1.54
SYLOID 40% avicel:lactose 25:75 Tablets were brittle and disintegrated instantly upon ejection

avicel:lactose 50:50 7.15 £ 0.33 2.54 £ 0.02 27.24 £ 0.41 0.34 £ 0.18 23.08 + 1.28
SYLOID 20% avicel:lactose 50:50 2533 £ 0.7 2.73+0.04 11.09 = 0.64 2.79 + 0.56 40.87 £ 1.2
SYLOID 40% avicel:lactose 50:50 More than 50 min 3.18 + 0.03 8.99 + 0.43 17.01 £ 1.45 52.28 £ 0.78
avicel:lactose 75: 25 28.08 £ 0.85 2.61 +0.01 35.36 + 0.98 0.2 £ 0.02 17.32 £ 1.19
SYLOID 20% avicel:lactose 75:25 39.34 £ 1.18 3.06 + 0.05 15.78 + 0.11 1.3 +0.39 37.34 £ 0.96
SYLOID 40% avicel:lactose 75:25 More than 50 min 3.40 = 0.01 13.27 £ 0.37 3.49 £ 0.15 57.73 £ 0.85

tablets at the same diluent ratio (17.32% + 1.19%). This
substantial increase indicates that SYLOID’s porous particles
introduce voids within the tablet matrix, increasing overall
tablet porosity. Generally, porosity decreased as Avicel content
increased (p < 0.01). This trend reflects Avicel’s denser packing
and stronger interparticle bonding compared to lactose, which
inherently produces more porous compacts due to its brittle

fracture mechanism [18, 21]. Microcrystalline cellulose’s fibrous
structure and hydrogen bonding facilitate plastic deformation
and close packing, reducing porosity [30, 31].

SYLOID’s contribution to porosity arises from its intrinsic
high pore volume (1.7 cm’/g), which cannot be compressed or
filled by other excipients [32]. As SYLOID concentration
increased from 0% to 20%, tablet porosity rose significantly.
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FIGURE 3 | The effects of the diluent composition and SYLOID amount

on the porosity of the tablets. The formulation containing 40% with (avicel:
lactose ratio of 25:75) is not included as it disintegrated instantly upon ejection.
Error bars representing standard deviation and *p < 0.05 and **p < 0.01.
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FIGURE 4 | The effects of the diluent composition and SYLOID amount

on the disintegration time of the tablets. The tablets with 40% SYLOID and
made using both avicel:lactose ratios of 50:50 and 75:25 was not added as
they did not disintegrate after 50 min. The formulation containing 40%

with (avicel:lactose ratio of 25:75) is not included as it disintegrated instantly
upon ejection. The redline represents 15 min disintegration time of the USP.
Error bars representing standard deviation and **p < 0.01.

For instance, 25:75 avicel:lactose tablets saw porosity increase
from 21.93% + 1.02% to 40.22% =+ 1.54%, demonstrating
SYLOID’s pronounced effect.

Disintegration Time of SYLOID Tablets

Disintegration time is a key quality attribute impacting drug
release kinetics and bioavailability. Table 1 summarises
disintegration times, while Figure 4 presents the effect of
excipient ratios and SYLOID content on disintegration.
Tablets containing 40% SYLOID with 25:75 avicel:lactose
disintegrated immediately upon ejection due to mechanical
brittleness and lack of cohesion, thus excluded from detailed
disintegration analysis. Similarly, 40% SYLOID tablets with 50:
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SYLOID SYLOID
40% L 20%

9

SYLOID 0%

FIGURE 5 | The disintegration and size decrease of tablets made with
avicel:lactose 75:25 and different concentrations of SYLOID after leaving
for 25 min.

50 and 75:25 diluent ratios failed to disintegrate within 50 min,
indicating excessively slow disintegration or potential capping.

Formulations with 20% and 40% SYLOID at 75:25 avicel:
lactose ratios exhibited the longest disintegration times,
exceeding USP  specifications  for  uncoated  tablets
(disintegration <15 min) [33]. Highlighting limitations in
achieving timely tablet breakup at high SYLOID and Avicel
concentrations.

Increasing  Avicel content  significantly  prolonged
disintegration (p < 0.01). For example, in 20% SYLOID
tablets, disintegration times increased from 13.98 *+ 0.21 min
at 25:75 ratio to 39.34 £ 1.18 min at 75:25 ratio, reflecting Avicel’s
low swelling and water absorption capacity, resulting in slower
disintegration  [18, 21]. Similarly, increasing SYLOID
concentration prolonged disintegration times across all ratios
(p < 0.01). At 50:50 avicel:lactose, disintegration time increased
from 7.15 + 0.33 min without SYLOID to 25.33 + 0.7 min at 20%
SYLOID loading.

The observed behaviour is attributed to the distinct physical
properties of the excipients. Lactose monohydrate is water-
soluble and rapidly dissolves upon contact with aqueous
media, enhancing water penetration and tablet breakup [19,
20]. Conversely, MCC is insoluble and exhibits poor swelling,
creating a dense matrix that impedes water ingress, thereby
extending disintegration [18, 21]. Additionally, lactose’s
solubility ~prevents formation of impermeable layers,
promoting faster disintegration [34]. SYLOID’s micro-sized
particles (~115 um) differ substantially from conventional
mesoporous silica nanoparticles (MSNs), which have much
smaller particle sizes and higher surface areas. These features
in MSNs facilitate rapid solvent absorption and tablet
disintegration [15]. The larger SYLOID particles result in
fewer particles per tablet and occupy a greater volume,
reducing overall surface area available for solvent contact and
thereby prolonging disintegration. Differences in disintegration
among SYLOID-free tablets are consistent with porosity and
excipient composition. Higher porosity tablets enable quicker
solvent penetration, facilitating excipient dissolution and
formation of voids, which accelerates disintegration [35].
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Figure 5 visually demonstrates these trends, showing tablets
with 75:25 avicel:lactose and varying SYLOID contents after
25 min in disintegration media. Tablets with 40% SYLOID
showed minimal erosion, consistent with the longest
disintegration times recorded. In contrast, 20% SYLOID
tablets exhibited intermediate erosion and disintegration
(~39 min), and tablets without SYLOID disintegrated
within 28.08 min.

Effects of the Excipient Compositions and
Silica Amount on Tensile Strength and
Friability

Figure 6 presents the tensile strength values (left) and friability
percentages (right) for all tablet formulations studied. The
formulation containing 40% w/w SYLOID with an avicel:
lactose ratio of 25:75 was excluded because the tablets were
highly brittle and disintegrated immediately upon ejection
from the press, making tensile strength and friability
measurements unfeasible.

The tensile strength values significantly increased (p < 0.05)
with increasing Avicel content in the diluent mixture. Specifically,
tensile strength rose from 15.85 + 0.64 MPa at an avicel:lactose
ratio of 25:75, to 27.24 + 0.41 MPa at 50:50, and further to 35.36 +
0.98 MPa at 75:25.

In contrast, an increase in SYLOID content caused a
significant decrease in tensile strength in all formulations. For
the formulation with avicel:lactose 75:25, tensile strength
dropped markedly from 35.36 + 0.98 MPa with 0% SYLOID
to 13.27 £ 0.37 MPa at 40% SYLOID (p < 0.05). Similar trends
were observed with the other ratios (25:75 and 50:50).

Regarding friability (Figure 6, right), the highest friability was
seen in the formulation containing 40% SYLOID and avicel:
lactose 50:50 (17.01% =+ 1.45%), while the lowest was in the
formulation with only avicel:lactose 75:25 (0.2% =+ 0.02%).
Friability significantly decreased (p < 0.05) from 1.38% =+
0.23% to 0.34% + 0.18% when the avicel:lactose ratio increased
from 2575 to 50:50 in formulations without SYLOID.
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FIGURE 6 | The effects of the diluent composition and SYLOID amount on the tensile strength (left) and friability (right) of the tablets. The formulation containing 40%
with (avicel:lactose ratio of 25:75) is not included as it disintegrated instantly upon ejection. Error bars representing standard deviation and *p < 0.05.
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FIGURE 7 | The effects of the diluent composition and SYLOID amount

on the thickness of the tablets. The formulation containing 40% with (avicel:
lactose ratio of 25:75) is not included as it disintegrated instantly upon ejection.
Error bars representing standard deviation *p < 0.05, *p < 0.01, and

**p < 0.001.

Conversely, friability significantly increased (p < 0.01) from
2.79% + 0.56% to 17.01% + 1.45% with an increase in
SYLOID content from 20% to 40% in formulations with
avicel:lactose 50:50.

Effects of the Excipient Compositions and
Silica Amount on Tablet Thickness

Tablet thickness data are summarised in Figure 7. The
formulation with avicel:lactose 25:75% and 40% SYLOID was
again excluded due to immediate disintegration post-ejection.
Tablet thickness increased significantly with both higher Avicel
content and increased SYLOID percentage. The thickest tablets
(3.4 + 0.01 mm) were observed in the 40% SYLOID and avicel:
lactose 75:25 formulation. Increasing the Avicel ratio from 25% to
50% resulted in a significant thickness increase from 2.6 *
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TABLE 2 | Tablet properties after the addition of the binder (PVP) at a concentration of 5% w/w, and the superdisintigrant (croscarmellose Na) at 2% w/w.

Formulation

time (min)
SYLOID 20% avi:lact 75:25 28.08 + 0.85
SYLOID 20% avicel:lactose 75:25 croscarmellose Na 2% 0.68 + 0.01
SYLOID 20% avicel:lactose 75:25 PVP 5% 35+0.8
SYLOID 20% avicel:lactose 75: 25 PVP 5% 3.98 + 0.06

crosscarmellouse 2%

0.07 mm to 2.73 £ 0.04 mm (p < 0.01). Similarly, raising SYLOID
content in  formulations correlated with  increased
tablet thickness.

Effects of the Binder and Superdisintegrant

on Tablet Properties

Table 2 shows the effects of incorporating polyvinylpyrrolidone
(PVP) at 5% w/w and croscarmellose sodium (CMC-Na) at 2% w/
w into the tablet formulation containing 20% SYLOID and avicel:
lactose 75:25. Adding PVP significantly reduced friability from
1.3% + 0.39% to 0.72% * 0.02% (p < 0.05). The disintegration
time remained above 15 min with PVP alone. The addition of
CMC-Na as a superdisintegrant dramatically reduced
disintegration time to 0.68 + 0.01 min. The combined
presence of PVP and CMC-Na resulted in tablets that met
USP requirements for friability (<1%) and disintegration
time (<15 min).

DISCUSSION

SYLOID’s Limitations as a Standalone

Excipient in Tablet Compression

The results clearly indicate that SYLOID, when used alone,
exhibits poor compressibility and mechanical strength. Failure
to form tablets at pressures below 221.72 MPa and disintegration
upon ejection at this high pressure highlight its unsuitability as a
direct compression excipient without additives. This behavior
aligns with the fundamental physical characteristics of SYLOID:
low bulk density, irregular particle morphology, and brittleness.

Particle fragmentation and reduction in particle size upon
compression (from 117.3 to 34.69 pm) confirm brittle fracture
rather than plastic deformation. SEM imaging corroborated these
findings, revealing surface cracks and detachment of fragments.
Such fragmentation disrupts particle cohesion and introduces
defects that compromise tablet hardness.

Mesoporous silica carriers, particularly those composed of
SiO,, are prone to structural squeezing under compression, where
pore collapse reduces tablet strength and may lead to premature
drug release [28]. Aluminosilicate carriers tend to have better
mechanical properties due to their altered network structures and
bonding, allowing improved tabletting [29].

Surface chemistry plays a critical role. Silanol groups on
SYLOID surface impart hydrophilicity but hinder strong
interparticle bonding, limiting cohesive strength in tablets [26].

Disintegration

Thickness Tensile Friability Porosity
(mm) strength (MPa) (%) (%)

3 +0.08 16.1 + 0.11 1.3+0.39 37.34 + 0.96
3.02 + 0.01 18.81 £ 0.51 121 £0.33 4255+ 1.23
3.04 + 0.06 22.11 £ 0.39 0.72 +0.02 37.19+0.39
3.04 + 0.02 20.33 £ 0.6 051 +0.18 33.73+0.28

The lack of plastic deformation capacity results in elastic recovery
after compression, promoting capping and lamination [36].
These phenomena explain why SYLOID alone cannot form
robust tablets.

Literature suggests that silica-based excipients require plastic
diluents [37], often in high proportions (>60% w/w), to improve
tabletting by compensating for silica’s brittleness [36]. Without
such excipients, silica particles form agglomerates and
interparticulate voids [38], resulting in mechanically weak
tablets prone to fragmentation and poor handling.

Enhancing Tabletability Through

Diluent Selection

The use of MCC and lactose as diluents demonstrated significant
improvements in tablet formation and mechanical properties.
MCC’s excellent plastic deformation and binding characteristics
reduced tablet porosity and increased mechanical integrity. In
contrast, lactose’s brittle fracture mechanism and high solubility
contributed to higher porosity and faster disintegration. The
interplay between SYLOID and diluents was complex.
Increasing SYLOID content increased porosity due to the
carrier’s high pore volume and low density, counteracting the
densifying effect of MCC. This increased porosity can be
advantageous for drug release but presents challenges for
mechanical strength and tablet robustness. High SYLOID
loading (40%) combined with a low MCC ratio (25:75 avicel:
lactose) resulted in tablets with inadequate mechanical integrity,
illustrating limits of formulation flexibility. Optimal balance is
required to ensure adequate compressibility, disintegration, and
mechanical strength.

Disintegration Mechanisms and Excipient

Interactions

Disintegration behaviour was strongly influenced by excipient
composition and SYLOID concentration. MCC’s poor swelling
and insolubility contribute to longer disintegration times,
whereas lactose dissolves readily, facilitating rapid water
ingress and tablet breakup.

SYLOID’s physical form influenced water penetration. Unlike
smaller MSNs with high surface area and rapid swelling,
SYLOID’s larger particle size and limited surface area reduced
water absorption and slowed disintegration [15]. The presence of
MCC may further impede water penetration by forming dense
matrices around SYLOID particles [19, 20]. Achieving a balance
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between tablet porosity, mechanical strength, and disintegration
time requires careful excipient selection and ratio optimisation
[18, 21]. Porosity facilitates water ingress and disintegration, but
excessive porosity compromises mechanical strength. MCC
provides plasticity and strength but slows disintegration;
lactose promotes rapid disintegration but may reduce tablet
hardness [35].

Effects of Excipient Composition on
Tensile Strength

The observed increase in tensile strength with increasing Avicel
content can be attributed to the inherent properties of
microcrystalline cellulose (MCC). MCC’s ability to undergo
plastic deformation allows its particles to deform and
maximise contact areas, facilitating stronger interparticle
bonding. This phenomenon is well documented in the
literature [10] and aligns with the fundamental principles of
tablet compaction.

Hydrogen bonding plays a critical role as well. The hydroxyl
groups on the MCC surface enable hydrogen bond formation
between adjacent particles, which enhances tablet cohesion
and mechanical integrity [31]. This chemical bonding
complements the physical deformation and particle
rearrangement  during compression. The crystalline
structure of MCC further supports its superior tabletability.
The tightly packed linear chains of glucose in MCC impart
mechanical strength and resistance to fragmentation [30].
Additionally, the irregular and elongated shape of MCC
particles promotes mechanical interlocking within the tablet
matrix, which another layer of strength
reinforcement [39]. Thus, the plasticity, hydrogen bonding
capability, crystallinity, and particle morphology of MCC
collectively explain why increasing Avicel ratios lead to
tablets with higher tensile strength.

serves as

Impact of Silica Amount and Particle Size on

Tablet Strength
In contrast to MCC, the presence of SYLOID silica negatively

affected tablet tensile strength as its concentration increased. This
finding is consistent with previous studies reporting that silica
excipients can reduce tablet compactability and increase friability
due to their rigid structure [40].

The rigid shell of SYLOID is attributed to silanol groups on
its surface, which impart limited plastic deformability. This
rigidity results in poorer particle bonding during compression
compared to the more deformable MCC and lactose particles
[25]. The microporous nature of SYLOID may further
contribute to its brittleness by restricting particle
rearrangement. Particle size is also an important factor.
While smaller particle sizes (such as those of mesoporous
silica nanoparticles) are known to improve tablet strength
by increasing surface area and promoting better bonding
[41], the relatively large particle size of SYLOID (~115 um)
used in this study likely limits these benefits. Larger particles
reduce the overall surface area for bonding and decrease the

Optimising Mesoporous Silica Tablet Formulation

efficiency of particle packing, contributing to the observed
decrease in  tablet tensile strength as SYLOID
content increases.

Friability Trends and Their Mechanistic

Explanation

The friability results complement the tensile strength findings.
The highest friability observed in tablets with 40% SYLOID and
50:50 avicel:lactose ratio reflects the lack of plastic deformation
and poor interparticle bonding of SYLOID, leading to weak
compacts that are more prone to mechanical wear and
damage [40]. Friability decreased significantly with increasing
Avicel content, which can be explained by the plastic deformation
properties and bonding capacity of MCC [42]. As the ratio of
MCC increases, the particles deform and bond more effectively,
producing harder tablets that resist abrasion and weight loss
during friability testing [18]. Additionally, increased SYLOID
content reduces the proportion of the plastic diluent mixture
(Avicel and lactose), thereby diminishing the overall plastic
deformation capacity of the formulation. This reduction limits
the ability of the matrix to distribute compressive forces around
the rigid silica particles, resulting in less compacted and more
friable tablets [18].

Effects of Excipient Composition on
Tablet Thickness

Tablet thickness varied significantly with both the ratio of
Avicel to lactose and the amount of SYLOID silica. Increased
Avicel content produced thicker tablets, consistent with its
plastic deformation behaviour that leads to less volume
reduction upon compression [43]. In contrast, lactose
monohydrate consists of fine crystals within an amorphous
matrix that undergoes plastic deformation but also significant
volume reduction upon compression [34]. Therefore,
formulations with higher lactose content (25:75 avicel:
lactose ratio) yielded thinner tablets. The increase in tablet
thickness with higher SYLOID content can be attributed to the
rigid and porous structure of the silica, which resists
compression. The silanol groups and porous nature of
SYLOID limit compressibility, requiring greater applied
pressure for compaction and often causing particle
fragmentation [24, 25]. This effect results in larger final
tablet volumes and increased thickness.

Optimisation of Tablet Formulation With

Binder and Superdisintegrant

Despite attempts to optimise tablet composition, formulations
with SYLOID consistently failed to meet pharmacopeial
disintegration and friability standards (below 1%) [44]. To
address these issues, functional excipients were incorporated.
Croscarmellose sodium (CMC-Na), a superdisintegrant, was
added at 2% w/w to facilitate rapid tablet disintegration by
promoting water uptake and swelling, thereby accelerating
tablet breakup [45]. Polyvinylpyrrolidone (PVP), a hydrophilic
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binder used at 5% w/w, improved mechanical strength by
enhancing interparticulate adhesion during compression and
reducing friability [46]The binder’s plastic deformation
properties increase powder densification and minimise surface
cracking and abrasion [46]. The combined use of PVP and CMC-
Na yielded tablets that met USP standards, balancing the
competing demands of mechanical robustness and rapid
disintegration. PVP alone improved friability but extended
disintegration time due to increased tablet cohesiveness
limiting water penetration. However, the addition of CMC-Na
counteracted this effect [47], resulting in rapid disintegration
[18]. This synergistic combination provides an optimal
formulation for SYLOID-containing tablets.

CONCLUSION

This study demonstrates that SYLOID XDP 3150, a mesoporous
silica microparticle, can be successfully incorporated into oral
tablet formulations when appropriate formulation strategies are
applied. Direct compression of SYLOID alone was not feasible
due to fragmentation under high compaction pressures, reflecting
its poor compressibility and large particle size. However,
optimisation of excipient ratios, particularly Avicel PH
102 and lactose, enabled tablets with acceptable mechanical
strength and disintegration properties. Tablets with 75% Avicel
showed significantly improved tensile strength and reduced
friability, while increased SYLOID content enhanced porosity
but negatively affected compressibility. Disintegration time was
highly dependent on lactose content and was further improved by
adding croscarmellose sodium (2%) as a superdisintegrant and
polyvinylpyrrolidone (5%) as a binder, which were necessary to
meet pharmacopeial requirements. The study underscores the
importance of balancing compression pressure, excipient
selection, and carrier concentration to address tabletting
challenges with mesoporous silica. These findings provide
valuable insights into formulating porous silica-based oral
dosage forms, supporting their potential as carriers for drug
delivery applications requiring high surface area and
controlled disintegration. Future work will focus on evaluating
drug release profiles from silica-based tablets to assess their
suitability as controlled-release delivery systems.

SUMMARY TABLE
What Is Known About This Subject

e Mesoporous silica materials have high surface area and
porosity, ideal for drug delivery.
e Their poor compressibility limits use in tablet formulations.

What This Paper Adds

e Tablet formulation with mesoporous silica is achievable
with optimised excipient ratios.

¢ Superdisintegrants and binders improve tablet strength and
disintegration.

Optimising Mesoporous Silica Tablet Formulation

e Formulation balance is key to maintaining function and
manufacturability.
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