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FIT-PNAs (forced intercalation-Peptide Nucleic Acids) are promising RNA sensors due to
the enhanced fluorescence gained by such molecules upon RNA hybridization. In this
report we describe a chemical approach that leads to unprecedented brightness for a
FIT-PNA where the neighbouring Guanine base (G) to the fluorophore (a.k.a. surrogate
base) is chemically modified with a cyclopentane (cp) backbone and is N-methylated,
leading to a positively charged (G*) base. A series of G modified bases (G*, cpG, and
cpG*) were introduced as the neighbouring base to BisQ (surrogate base) in 15-mer
FIT-PNAs designed to sense the oncogenic long-noncoding RNA, colon cancer
associated transcript 1 (IncRNA CCTA-1). Using synthetic RNA, the combination
denoted as cpG™ led to a two-fold increase in brightness (BR = 16.9) compared to
the unmodified G base (BR = 8.4). Introducing a G mismatch in RNA sequence that is
opposite to the G base (G, G*, ¢cpG, or cpG™*) in the FIT-PNA, led to an increase in
fluorescence that was not observed for synthetic DNA. Molecular simulations
confirmed these observations and further correlated fluorescence data for FIT-
PNAs with synthetic DNA and RNA with/out mismatches. Importantly, in ovarian
cancer cells overexpressing CCAT1, only the cpG* modified FIT-PNA produced a
bright fluorescent signal, confirmed by FACS and confocal microscopy. Our results
demonstrate that strategic chemical modifications of the neighboring G base in FIT-
PNA significantly enhance their brightness and specificity for RNA detection in
biological systems.

Keywords: FIT-PNA, BisQ, cpG*, molecular simulations, RNA biosensors

INTRODUCTION

Peptide Nucleic Acids (PNAs) are synthetic DNA analogs that offer high chemical and enzymatic
stability [1, 2], strong affinity, and sequence-specific recognition of complementary RNA and DNA
(1, 3, 4].

PNAs face several limitations, including low aqueous solubility, a tendency to self-aggregate, non-
specific interactions with biomacromolecules, poor cellular uptake, and rapid elimination in vivo [5].
To address these issues, researchers have explored various strategies such as chemical modifications
of the PNA backbone [6], conjugation with cell-penetrating peptides [7] and targeting ligands [8],
and encapsulation within nanoparticles [9, 10].
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Detecting RNA biomarkers, such as pathogens (e.g., SARS-
CoV-2, HIV) or disease indicator, is a simple and effective
approach for medical diagnosis. Fluorogenic PNA probes
[11-14] have proven particularly useful for detecting various
RNA molecules, including mRNA, IncRNA, siRNA, and miRNA,
both in extracted RNA sample [15, 16] and within cells [2, 17-22],
tissues [23], and in vivo [17, 24].

PNAs have been applied for RNA sensing by various
alternative approaches. One is based on Graphene Oxide (GO)
that interacts with PNA by n—n stacking and quenches PNA
fluorescence (of the appended fluorophore). In addition, due to
its nanosize, GO facilitates PNA cellular uptake [25-28]. Upon
release of PNA from GO after RNA hybridization, a fluorescent
signal is gained.

A variety of electrochemical-based PNA sensors have been
devised to detect miRNAs with miR-21 as the most common
target for cancer diagnosis [29-33] as well as others [34-36]. Such
biosensors are extremely sensitive to RNA levels reaching a limit
of detection (LOD) in the range of femto to attomolar. To achieve
such high sensitivity, other amplifications such as rolling cycle
amplification (RCA) [37] and ATP-driven strand displacement of
DNA nanoflowers [37, 38] was realized.

In addition, colorimetric detection of miR-21 [39] and c-Myc
mRNA [40] was achieved with the PNA as the hybridization
nucleic acid.

Initially developed with PNA chemistry [41], Forced-
Intercalation (FIT) PNA probes have expanded to 2’-O-methyl
RNA and DNA chemistries (FIT probes without a PNA
backbone) [12, 24, 42, 43]. Incorporating Locked Nucleic Acid
(LNA), a rigid sugar-modified nucleotide, flanking the FIT
surrogate base Quinoline Blue (QB or Bis-Quinoline (BisQ) in
PNA), significantly increases probe brightness [42]. Backbone
modifications with a cyclopentane (cp) ring have also improved
binding affinity and specificity to RNA and DNA [44-46].
Recently, we demonstrated that adding a cyclopentane-
modified monomer (cpT or cpC) adjacent to BisQ, enhances
brightness and quantum yield, especially when positioned 3’ to
BisQ [47]. We further applied these modifications to detect a
highly expressed long non-coding RNA (FLJ22447) in ovarian
cancer cells [22]. The oncogenic long-noncoding RNA, colon
cancer associated transcript 1 (IncRNA CCTA-1) is highly
expressed in colorectal cancer (CRC) as determined by RT-
qPCR [48, 49] and by an electrochemical Geno-sensing
platform [50]. Based on a previous study on detecting
CCATI1 in CRC [22], we selected this biomarker that is over-
expressed in many cancers, among them, ovarian cancer.

Research from Aiba and Shoji showed that N-7 methylation of
guanine (G') improves hybridization efficiency and reduces
PNA-PNA duplex formation [51]. Since the sensitivity of FIT-
PNA depends on the ratio of duplex to single-stranded (ss) forms,
lowering background fluorescence in ss form can improve
biomarker detection. Background fluorescence arises partly
from m-m interactions between BisQ and neighboring purines
(G and A). The positively charged G" may induce electrostatic
repulsion, reducing this background.

To test this, we synthesized a series of FIT-PNAs with G, cpG,
and cpG" modifications. We chose a 15-mer FIT-PNA targeting
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Colon Cancer Associated Transcript 1 (CCAT-1) [52-55], a
IncRNA highly expressed in ovarian cancer [53, 56-59]. Our
results show that all G-modified FIT-PNAs have similar
background fluorescence, but the cpG" variant produces the
strongest fluorescent response upon hybridization to synthetic
RNA. Importantly, cpG" FIT-PNA effectively detects CCAT1 in
ovarian cancer cells, where other variants show much
less response.

MATERIALS AND METHODS

Materials

Manual solid-phase synthesis was performed by using 5 mL
polyethylene syringe reactors (Phenomenex, Torrance, CA,
USA) that are equipped with a fritted disk. RNA oligos were
purchased from IDT, USA. Fmoc-PNA monomers were
purchased from PolyOrg, Inc. (USA) and used as received.
Fmoc-D-Lysine and reagents for solid phase synthesis were
purchased from Merck (Germany) and Biolab (Israel). Fmoc-
protected cyclopentane PNA monomers (cpG) [60], positively
charged guanine (G") [51], and BisQ [61] were synthesized as
previously reported.

Solid-phase Synthesis of FIT-PNAs

FIT-PNAs were synthesized on solid phase in a continuous
process, thereby eliminating the need for repurification [61].
Coupling of the first monomer, Fmoc-D-Lysine(tBOC)-OH,
onto Novasyn TGA Resin was performed as follows: The resin
(100 mg, 0.25 mmol/g) was allowed to swell in 2 mL DMF for 2 h.
For pre-activation, 5 equivalents of diisopropylcarbodiimide
(DIC, 0.125 mmols, 15.8 mg, 19.5 pL), and 0.1 equivalent of
4-dimethylaminopyrimidine (DMAP, 0.0025 mmols, 0.3 mg)
were added to a solution of 10 equivalents of Fmoc-D-
Lysine(tBOC)-OH (0.25 mmols, 117 mg) in DCM (2.5 mL) in
an ice bath. After 20 min, the mixture was evaporated, re-
dissolved in dry DMF and added to the resin. After 5h, the
resin was washed with dichloromethane (5 x 2 mL), DMF (5 x
2 mL) and the procedure was repeated. Fmoc deprotection was
performed by treating the resin with 20% piperidine in DMF for
10 min (x2), followed by washing with DCM (5 x 2 mL) and
DMF (5 x 2 mL). For a 10 umols scale synthesis on TGA-
NovaSyn resin (loading—0.25 mmol/g), 2-(1H-7-azabenzotriazol-

1-y1)-1,1,3,3-tetramethyl uronium hexafluorophosphate
methanaminium  (HATU, 40 umols, 152 mg),
hydroxybenzotrilazole ~(HOBT, 40 umols, 54 mg),

diisopropylethylamine (DIPEA, 80 pmols, 14 uL), and Fmoc-
amino acids/Fmoc-PNA monomers (40 pmols) were mixed in
dry DMF (0.4 mL). After 5 min of pre-activation, the solution was
transferred to the resin. After 60 min, the reaction mixture was
discarded, and the resin was washed with DCM (5 x 2 mL) and
DME (5 x 2 mL). The PNA-peptide conjugates were deprotected
and released from the resin by treatment with 90:10 (v/v) TFA/
m-cresol for 2 h (2 x 1 mL). The PNAs were triturated with cold
diethyl ether, and the precipitate was collected by centrifugation
and decantation of the supernatant. The residues were dissolved
in water and purified by semi preparative HPLC using a Dionex
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UltiMate 3000 HPLC system (ThermoFisher Scientific, Waltham,
MA, USA) with automatic fraction collection. A semi-preparative
C18 reversed-phase column (Jupiter C18, 10u, 3004, 250 x
10 mm, Phenomenex) was used with a linear gradient of
eluents A (0.1% TFA in water) and B (MeCN) at a flow rate
of 4 mL/min. Mass analysis of FIT-PNAs was acquired by
MALDI-TOF MS (Bruker Daltonics, Microflex LRF) using 2,5-
Dihydroxybenzoic acid (DHB) as a matrix.

T Measurement

The melting temperatures (T,,) of the PNA: RNA/DNA duplexes
were determined using UV melting curves recorded on an
Evolution One Plus UV-Vis Spectrophotometer. Solutions of
the FIT-PNAs and their complementary RNAs (1:1 ratio) were
prepared in a PBS buffer (100 mM NaCl, 10 mM NaH,PO,, pH 7)
and adjusted to a final duplex concentration of 2 uM. Prior to
analysis, the samples were heated from 20 °C to 90 °C at a rate of
5 °C/min and then cooled back to the starting temperature at a
rate of 2 °C/min. Absorbance at 260 nm was monitored as the
temperature increased to 90 °C at a rate of 1 °C/min. Each
measurement was repeated at least twice, with the T, value
representing the average value of the inflection point.

Fluorescence Measurements

Fluorescence spectra were recorded by using a Jasco FT-6500
spectrometer. Measurements were carried out in fluorescence
quartz cuvettes (10 mm). Solution of the FIT-PNA and the RNA/
DNA (ratio 1:2) were prepared in a PBS buffer (pH 7.0) at 37 °C
for 2 h.

UV-Vis Spectrum

UV-Vis spectra of CCAT1 FIT-PNAs were recorded using an
Evolution One Plus UV-Vis Spectrophotometer. FIT-PNA
solutions, either with or without the presence of RNA
synthetic RNA, were prepared in PBS buffer (100 mM NaCl,
10 mM NaH,PO,, pH 7). Prior to measurement, the FIT-PNA:
RNA duplex solutions were annealed at 37 °C for 2 h. Full
spectrum was recorded in the range of 200-800 nm.

Circular Dichroism (CD) Spectroscopy

CD spectra were acquired wusing a Jasco F-1100
spectropolarimeter equipped with a temperature-controlled
sample holder. Samples included both single-stranded FIT-
PNA and FIT-PNA:RNA duplexes (1:1 M ratio), prepared at a
final FIT-PNA concentration of 15 uM in PBS buffer (100 mM
NaCl, 10 mM NaH,PO,, pH 7.0). Hybridization was carried out
by incubating the samples at 37 °C for 2 h. CD measurements
were performed at 25 °C using a 1 mm pathlength quartz cuvette
with a total volume of 200 pL. Spectra were recorded over
200-320 nm range, and each final spectrum represents an
average of five replicates.

Quantum Yields

Quantum yields for all FIT-PNAs were calculated using Cresyl
Violet as a reference fluorescent dye [62-64]. Each FIT-PNA (4,
6 and 8 pM) was hybridized to complementary and
G-mismatched RNA in PBS (pH 7.0) at a 1:2 ratio,
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respectively, and incubated at 37 °C for 2 h. The samples were
excited at 580 nm, and emission spectra were recorded between
400 and 750 nm.

Limit of Detection

Limit of detection (LOD) of all FIT-PNAs was recorded by using
a Cytation 3 plate reader. Measurements were carried out in
Greiner 96 well black plates with flat bottom in a Tris-EDTA
buffered solution (25 mM Tris-EDTA, 150 mM NaCl with 0.05%
Tween-20). The FIT-PNA’s concentration was constant in the
duplex solution (0.5 pM) while the RNA was added in different
concentrations. All the FIT-PNAs were incubated with the
complementary RNA at 37 °C for 2 h on the plate for
annealing. LOD was calculated according to the formula:
LOD = 3.3*o/slope [65].

RT-gqPCR

Total RNA from the cells was isolated using TRIzol reagent
(ThermoFisher Scientific, Waltham, USA) following the
manufacturer’s instructions and quantified using a NanoDrop
2000 Spectrophotometer (ThermoFisher Scientific, Waltham,
USA). Reverse transcription of RNA(1 pg) into cDNA was
performed using the QScript cDNA Synthesis Kit (Quantabio,
Beverly, MA, USA) according to the manufacturer’s instructions.
RT-qPCR was conducted to on a CFX Connect Real-Time PCR
Detection System (BioRad, Hercules, CA, USA) using PerfeCTa
SYBER® Green FastMix qPCR reagent (Quantabio, Beverly, MA,
USA). The primers used are described in Supplementary
Material (Supplementary Table S4), they were purchased
form IDT (Coralville, USA) and HyLabs (Rehovot, Israel). The
target genes were amplified under the following thermocycling
conditions: initial denaturation at 95 °C for 5 min, followed by
40 cycles of 95 °C for 10 s and 60 °C for 30 s. The specificity of the
PCR products was verified by analyzing the melting curves. The
relative expression of target genes was calculated using the 244"
method, and expression levels were normalized to the
housekeeping gene Ribosomal protein lateral stalk subunit
PO (RPLPO).

Cell Culture

OVCA433 and SKOV3 cells were grown in EMEM and McCoy’s
5A, respectively, (Beit Haemek Biological Industries, Israel)
supplemented with 10% (v/v) FBS, 100 U/mL penicillin;
0.1 mg/mL streptomycin; 2 mM L-Glutamine, at 37 °C with
5% CO,. Cells were routinely checked for mycoplasma
contamination using MycoBlue Mycoplasma detector Kit
(Vazyme, China).

Flow Cytometry Analysis

FACS analysis of FIT-PNA uptake was conducted by seeding
OVCA433 (50 x 10) and SKOV3 (35 x 10%) cells into 6-well
plates, allowing them to adhere overnight under standard culture
conditions until they reached 70%-80% confluence. The medium
was replaced, and the cells were incubated with 2 pM FIT-PNAs
at 37 °C in a humidified atmosphere containing 5% CO, for 5 h.
Following thorough washing, the cells were harvested using
0.25% Trypsin-EDTA (3 min at 37 °C), collected into 15 mL
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Falcon tubes, and centrifuged at 1,200 rpm for 5 min. The
supernatant was discarded, and the cells were resuspended in
350 uL cold PBS, which was then filtered through 70 um Falcon
Cell Strainers. The samples were analyzed using a Fortessa FACS
analyzer (Core Research Facilities, The Hebrew University of
Jerusalem, Jerusalem, Israel). The cells were gated based on
normalized fluorescence of untreated cells to determine the
percentage of cells that internalized the FIT-PNAs. Data
analysis was performed using FlowJo 10.10 software.

Statistical Analysis

FACS data are presented as the mean + SD from experiments. At
least two independent experiments were performed per assay,
each with Two technical replicates. Statistical significance was
determined using a One-way or Two-way ANOVA test with P <
0.001 considered extremely significant (***), P < 0.01 highly
significant (**), and P < 0.05 statistically significant (¥).
mRNA expression, as measured by RT-qPCR, was normalized
to the control cell expression, and the data represent the average
of two biological replicates, each with corresponding duplicates.
Statistical analysis was carried out using Student’s t-test, with P <
0.05 considered statistically significant (*).

Confocal Microscopy

Twenty-four hours prior to PNA addition, OVCA433 cells (60 x
10%) and SKOV3 cells (50 x 10°) were seeded onto p-slide 8-well
chambers (ibidi GmbH, Grifelfing, Germany) and incubated at
37 °C with 5% CO, until reaching 60%-70% confluence. The cells
were rinsed with 1x PBS and treated with 2 uM FIT-PNAs in
medium at 37 °C for 5 h. After incubation, the cells were washed
twice with 1x PBS and stained with Hoechst (1 pg/mL) for 15 min
at room temperature. The cells were then washed again with 1x
PBS, and 300 pL of 1x PBS was added to each well for live cell
observation. Control cells included OVCA433 and SKOV3 cells
that were not treated with FIT-PNA. Cell fluorescence
observations were performed using a Nikon AIR+ confocal
microscope (Core Research Facilities, The Hebrew University
of Jerusalem, Israel) and images were analyzed using NIS-
Elements AR software (version 5.21).

Molecular Stimulations

Double-stranded PNA molecules were constructed using the
Proto Nucleic Acid Builder (pNAB) software, where the 5’ to
3’ sequence of the target RNA/DNA strand was used as the N- to
C-terminal input for PNA strand generation. The resulting PNA:
PNA duplex structures were analyzed using the x3DNA server
to obtain helical parameters. The generated parameter file was
manually edited (replacing “T” with “U”) and used to model
corresponding RNA:RNA and B-form DNA:DNA duplexes
using x3DNA. Relevant single strands from the pNAB-
generated PNA:PNA duplex and the x3DNA-generated
RNA:RNA or DNA:DNA duplex were extracted and saved
as individual PDB files. These were then docked into PNA:
RNA and PNA:DNA duplexes using the HNADOCK server.
The resulting duplex structures were processed in Schrodinger
Maestro (v.14.0) for structure preparation. Final structures

were energy-minimized using the OPLS4 force field
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implemented in Maestro. Further details are provided in the
Supplementary Material.

RESULTS
Chemical Synthesis of cpG™ and FIT-PNAs

Based on the simple one-step synthetic of G* PNA monomer
[51], we prepared in quantitative yields the cpG" PNA monomer
starting from the Fmoc-protected cpG monomer [60] (Scheme
1). The final product was used after a simple workup and was fully
characterized by NMR and HRMS (Supplementary
Figures S35, $36).

In this study, we have synthesized a series of G-modified FIT-
PNAs (Table 1) that target the IncRNA CCAT1. This RNA
biomarker has been previously studied in our lab for FIT-PNA
based diagnosis in colorectal cancer where CCAT1 was detected
in unfixed cancer cell lines [18] and in fresh human cancer tissues
[23]. The choice of the BisQ surrogate base (Scheme 2) was for
several reasons: (1) ease of synthesis [61]; (2) superior RNA
sensing in comparison to the TO surrogate base [61]; and (3) red-
shifted emission (Aegymax = 613 nm) that is more suitable for
biological samples (lower background fluorescence from
biological samples). Three types of G modifications adjacent to
BisQ were installed: G*, c¢pG, and cpG". FIT-PNAs were
synthesized on the solid support (Novasyn TGA resin) using
standard Fmoc-based peptide/PNA Chemistry. To provide water
solubility and cellular uptake, FIT-PNAs were installed with a
short peptide ((D)K,) that has higher stability in biological
medium than the L-peptide (K,), as previously reported [2].
After FIT-PNA cleavage from the solid support, the FIT-PNA
oligomers were purified by HPLC and analyzed by MALDI-TOF
MS (Supplementary Figures S1-S4).

Photophysical and Molecular Simulation
Studies of FIT-PNAs With Synthetic RNA

and DNA

FIT-PNAs were annealed to a fully complementary 15-mer RNA,
and the fluorescence of the duplexes was measured (Figure 1).
Among the sequences tested, cpG" FIT-PNA exhibited the most
pronounced response, showing over a twofold increase in
fluorescence compared to the unmodified G FIT-PNA. While
single modifications on G (G' and cpG) also enhanced
fluorescence, their performance was less effective than the
double modification. Overall, the data demonstrate that the
combined chemical modifications on G synergistically improve
the fluorescence response, making cpG" FIT-PNA the most
responsive RNA probe.

We next explored the sequence selectivity of FIT-PNAs by
measuring the fluorescence of FIT-PNAs with RNA sequences
that have a single mismatch at the nucleobase opposite to the
modified G base in the FIT-PNA sequence. To our surprise, we
found higher emission for all FIT-PNA sequences for the GG
mismatch in RNA (Figure 3A; Supplementary Figure $16). This
was not the case for a GG mismatch in DNA (Figure 3C). All
other mismatches were well-discriminated by FIT-PNAs
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SCHEME 1 | One step synthesis of cpG* PNA monomer. In red — cp backbone and in blue - methyl group on N7 guanine.

TABLE 1 | G-modified and unmodified FIT-PNAs. BisQ is marked in blue and guanine (modified and unmodified) PNA bases are marked in red. (D)K4 = 4 Lysines in D

configuration.

Entry Description
Unmodified Unmodified FIT-PNA (control)
G* G* modified FIT-PNA

cpG cpG modified FIT-PNA

cpG* cpG* modified FIT-PNA

PNA sequence

% (D)K,-GTGAATG-BisQ-TCCAACC™

3 (D)K,-GTGAATG*-BisQ-TCCAACC™®

¥ (D)K,4-GTGAATCPG-BisQ-TCCAACC™®
% (D)K,-GTGAATCPG -BisQ-TCCAACC™®

H
v"\ﬂ,n/\N/\/N"‘q,\
(o]
[e]

Inner quinolinering

Outer quinolinering

SCHEME 2 | Quinoline rings in BisQ.

(Supplementary Figure S16 for RNA; Supplementary Figure
S17 for DNA).

The overall photophysical properties of FIT-PNAs were
assessed by measuring three key parameters: brightness (BR =
QY X g,4x), fluorescence increases upon RNA hybridization (I/
Iy), and quantum yield (QY) (Table 2). These measurements also
included the GG mismatch RNA for all FIT-PNAs.

As shown in Table 2, G" FIT-PNA exhibited parameters
similar to those of the unmodified G FIT-PNA, indicating
minimal improvement in photophysical performance. For
example, QY values were 0.11 and 0.13 for fully matched

600
--- Unmodified
400 == Unmodified: RNA
S +
E G
- +.
o G™: RNA
--- ¢cpG
200+ == cpG: RNA
cpG*
cpG*: RNA
0 - . Y ’ . .
600 700 800

Wavelength (nm)

FIGURE 1 | Enhanced fluorescence of G modified and unmodified

CCAT1 FIT-PNAs after RNA hybridization. Annealing was conducted by
incubating FIT-PNA:RNA at 37 °C for 2 h. The unmodified FIT-PNA is marked
in blue, G* FIT-PNAis marked gray, cpG FIT-PNA is marked in green and
cpG™ is marked in orange. [FIT-PNA] = 0.5 pM, [RNA] = 1 uM. (A\ex = 570 nm,
Aem = 580 nm). RFU = Relative Fluorescence Unit.

(FM) and GG mismatch RNA, respectively, comparable to
0.09 and 0.11 for G FIT-PNA. In contrast, cpG FIT-PNA
demonstrated increased responsiveness, with QYs of 0.17 and
0.24 for FM and GG mismatch RNA. Most notably, the cpG™ FIT-
PNA achieved the best results, with approximately a threefold
increase in both QY and brightness (QY = 0.29; BR = 27.8) with
GG mismatch RNA compared to G FIT-PNA. Its fluorescence
enhancement over background in the single-stranded form was
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TABLE 2 | Photophysical properties and binding affinities of FIT-PNAs. BR, brightness; ¢, quantum yields; I/lo, signal to background ratio, and LOD, limit of detection.

Entry PNA:RNA duPIex }\max,abs [nm] €max [mMM-1 cm-1] ¢ BR [mMM-1 cm-1] I/IO Tm ATm LOD [nM]
Unmodified G-C 588 93.3 0.09 8.4 4 65.8 - 5
G-Grom 590 97.5 0.11 10.4 6.6 59.3 (-6.5) 5.65
G* G-C 584 85.2 0.11 6.4 5.3 62.8 (-3.0) 2.67
G-Grom 584 93.2 0.13 121 7 58.9 (-6.9) 3.92
cpG G-C 590 86.5 0.17 14.7 8.7 68.9 (+3.1) 2
G-Grm 588 92.6 0.24 222 18.7 61.2 (—4.6) 3.5
cpG* G-C 584 89 0.19 16.9 10.5 60.9 (-4.9) 1.56
G-Grm 584 95.8 0.29 27.8 14.3 56.9 (-8.9) 2.6
A) B) 0.35
=5 00 :‘f\_‘ BisQrange
F A Y
Unmodified FIT-PNA 021 £\
204 0.20 4 £
_ 77\
g ms.//‘:‘,f ."01 3
- Unmodified a™ a0 ﬂw"‘ \,
g d ! h
= — Unmodified: RNA o oos £ k‘«-
2 — Unmodified: Gmm RNA 101 000 ey
E 250 300 S 600 650
a 0.5 4 Wavelength (nm)
O -10 Wavelength (nm) /\\
-15 0.0 4 \x..,.
-20 250 300 350 400 450 500 550 600 650 700 750
Wavelength (nm)
——Unmodified — Unmodified: RNA ——Unmodified: G,,,, RNA
FIGURE 2 | CD and UV-Vis spectra of unmodified CCAT1 FIT-PNA before and after RNA hybridization. Annealing was conducted by incubating FIT-PNA:RNA at
37 °C for 2 h (A) CD spectra of unmodified CCAT1 FIT-PNA as single strand (marked in black) and hybridized to fully matched and Gy, RNA (marked in red and blue,
respectively) in PBS buffer (100 mM NaCl, 10 mM NaH,POy,, pH 7.0). [FIT-PNA] = [RNA] = 15 uM. (B) UV-Vis spectrum of unmodified FIT-PNA as single strand and
hybridized to fully matched and Gm RNA in PBS buffer. [FIT-PNA] = [RNA] = 4 uM.

also significant, with I/I, values of 10.5 and 14.3 for FM and GG
mismatch RNA, respectively.

Moreover, a slight increase in absorbance values was observed
in the BisQ absorbance region (Apax aps= ~590 nm) for the duplex
formed with Gy, RNA compared to the fully matched RNA
duplex (Figure 2B; Supplementary Figures S18-520). This was
observed for all FIT-PANs (modified and unmodified).

Limit of detection (LOD) is defined as the lowest
concentration of RNA detected by a particular probe. All
modified FIT-PNAs exhibited a lower LOD compared to the
unmodified G FIT-PNA (Supplementary Figure $26; Table 2).
Specifically, the LOD values for fully matched RNA decreased
from 5.00 nM for the unmodified probe to 2.67, 2.00, and 1.56 nM
for G, cpG, and cpG" FIT-PNAs, respectively. cpG" FIT-PNA
also showed the lowest LOD with G,,,,, RNA (2.6 nM). However,
all FIT-PNAs exhibited higher values for the LODs (inferior) for
the Gy RNA compared to the fully matched RNA.

We also measured melting temperatures (T,,) for FIT-PNAs
with FM and GG mismatch RNA (Table 2; Supplementary
Figures S8-S11). For FM RNA, the presence of a positive
charge on G (G") generally decreased duplex stability, shown
by a Ty, reduction of about 3 °C for G*/G and around 4.9 °C for
cpG*/cpG. Conversely, the cpG modification increased T, value

only for cpG FIT-PNA. All FIT-PNAs exhibited lower T, values
with GG mismatch RNA, indicating decreased duplex stability.
Interestingly, there was an inverse correlation: the lower stability
of the GG mismatch duplex corresponded with higher
fluorescence intensity across all FIT-PNAs. FIT-PNAs were
also tested with synthetic DNA, where no fluorescence
increase was observed for GG mismatches, and all mismatches
were well-resolved (Supplementary Figure S17; Supplementary
Table S3), in accordance with molecular simulations
(Figures 3C,D, 5).

CD spectroscopy was also performed on all FIT-PNA
sequences in the presence and absence of complementary
RNA and G, RNA (Figure 2A; Supplementary Figure S21)
to investigate molecular interactions and assess the structural
stability of the formed duplexes. As expected for single-stranded
FIT-PNAs, including the ¢pG and cpG* modified variants, no
detectable CD signals were observed [66]. Upon hybridization,
both FIT-PNA:RNA and FIT-PNA:G,,, RNA duplexes exhibited
characteristic CD  signatures of antiparalledl PNA:RNA
heteroduplexes [3, 67]. The CD signals of the FIT-PNA:G,,
RNA duplexes were less intense in the ~260-270 nm region, and a
slight spectral shift was observed, suggesting altered helical
organization and reduced duplex stability. Nonetheless, both
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duplex types displayed a similar maximum at ~210-220 nm and a
minimum at ~240-245 nm. These observations align with the
thermal melting (T,,,) data, where FIT-PNAs showed lower T,,
values when hybridized to G,,;m RNA compared to the fully
matched RNA.

To provide some insight into these observations, we modelled
the structures of “fully matched BisQ FIT-PNA:RNA duplex,”
“G-G mismatched BisQ FIT-PNA:RNA duplex,” “fully matched
BisQ FIT-PNA:DNA duplex,” and “G-G mismatched BisQ FIT-
PNA:DNA duplex” (detailed in ESI, Supplementary Figures
§37-841). It is noteworthy that these molecular simulations
were done at the ground state of these molecules.

Ten ns stochastic dynamics simulations were conducted to
monitor the dihedral angle (w) between the two quinoline rings of
BisQ (Scheme 2) and their m-m stacking interactions with
neighboring nucleobases.

We observed that in the fully matched duplex (with RNA), w
mainly ranged from —100° to —140°, with dominantly the inner
quinoline ring nt-stacking effectively, and the outer ring exhibited
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FIGURE 3 | Fluorescence measurements and their accompanying molecular simulations for duplex formation of unmodified (G) CCAT1 FIT-PNA with FM and GG
mismatched RNA and DNA. Annealing was conducted by incubating FIT-PNA:RNA/DNA at 37 °C for 2 h [FIT-PNA] = 0.5 uM, [RNA] = [DNA] = 1 pM. RFU = Relative
Fluorescence Unit. (A) Enhanced fluorescence of unmodified FIT-PNA after hybridization to the GG mismatch RNA sequence in comparison to the fully matched (FM)
RNA sequence. (B) Population density of different values of the dihedral angle (w) in 10 ns of the simulation for “fully matched BisQ FIT-PNA:RNA duplex” (black line)

and “G-G mismatched BisQ FIT-PNA:RNA duplex” (blue line). (C) Enhanced fluorescence of unmodified FIT-PNA after hybridization to the GG mismatch DNA sequence
in comparison to the fully matched (FM) DNA sequence. (D) Population density of different values of the dihedral angle (w) in 10 ns of the simulation for “fully matched BisQ
FIT-PNA:DNA duplex’ (black line) and “G-G mismatched BisQ FIT-PNA:DNA duplex” (red line).

weak or no m-stacking at all. In contrast, the G-G mismatched
duplex (with RNA), predominantly showed w between —40°
and -80°, with both rings forming face-to-face n-n
interactions. This may explain the higher fluorescence
observed for a G-G mismatch in RNA. Analysis of dihedral
angle populations (w) during 10 ns shows a clear difference
between the duplex types (Figures 3B,D). For the G-G
mismatch with RNA, more population density lies
between —40° and -80°, favorable for m-m stacking of both
quinoline rings (Figure 3B, blue trace). In the fully matched
duplex (with RNA), o predominantly falls between -100°
and -140°, a range unsuitable for stacking of the outer
quinoline ring (Figure 3B, black trace). For DNA, the
population densities are strikingly different (Figure 3D). For
the G-G mismatch with DNA, w spreads all over (Figure 3D, red
trace) with no distinct population density at the —40° to —80°
range. With FM (with DNA), there is a distinct population at this
range (Figure 3D, black trace), albeit lower than that of G-G
mismatch with RNA (Figure 3B, blue trace). Altogether, the

British Journal of Biomedical Science | Published by Frontiers

November 2025 | Volume 82 | Article 15526



Maree et al.

Chemically Modified RNA Sensors

represented in black trace and “G-G mismatched BisQ FIT-PNA:RNA duplex” is

A) B Fui match B)
I G-G mismatch
= Full match_RNA
204 +-20 - ®  G-G mismatch_RNA
% 80 . .
404 L 40 ®
2 (. & E = E § . .
T e - A
% s 7] B | r : 2 60
B °© [ o
E o 804 | - -80 @ 50
< ! T o
- @ 404
2 £-001 l - -100 s 0
: 2 18 B 2 ]
% B 1204 k120 £
E 5 20
B L | E
2 1404 L .140 % 10l
-
k] o . - .
-160 - : . - - . -160 ® o+—TF - - - . .
1 2 3 4 5 6 1 2 3 4 5 6
Time (ns) Time (ns)

FIGURE 4 | (A) Change of dihedral angle (w) over time in case of “fully matched BisQ FIT-PNA:RNA duplex” (black boxes) and “G-G mismatched BisQ FIT-PNA:
RNA duplex” (blue boxes). Data is shown for initial 6 ns. (B) Percentage of stacked population of BisQ over 6 ns. “Fully matched BisQ FIT-PNA:RNA duplex” is

represented in blue trace.
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results shown in Figures 3B,D correlate with the spectroscopic
data (Figures 3A,C).

To validate our observation that the value of w ranging
from -40° to —80° is suitable for n—stacking of both quinoline
rings in BisQ, we further modelled and simulated a total of 4 FIT-
PNAs that include X-BisQ in each probe (where X = A, G, C,or T,
Supplementary Figures S1, S5-S7), and performed a correlation
study between the percentage of well-stacked population of BisQ
(where both quinoline rings are stacked between neighboring
bases) and the percentage of population where w ranges
from —40° to —80° over 10 ns (Supplementary Figures S41a).
We obtained a 0.82 Pearson’s correlation coefficient
(Supplementary Figures S41b). Subsequently, we validated
this correlation to the experimental value of fluorescence
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FIGURE 5 | (A) Change of dihedral angle (w) over time in case of “fully matched BisQ FIT-PNA:DNA duplex” (black boxes) and “G-G mismatched BisQ FIT-PNA:

pulation of BisQ over 6 ns. “Fully matched BisQ FIT-PNA:RNA duplex” is represented
in red trace.

against m-stacked BisQ population which provided a Pearson’s
correlation coefficient of ca. 0.74 (Supplementary Figures S41c).
Statistically, these two values suggest a good correlation between
these parameters (fluorescence and n-stacked BisQ population).

We next studied the dynamics of w over each nanosecond
(for 6 ns, data is shown in Figures 4, 5), focusing on either poor n-
stacking (-100° < w < —140°) or appreciable m-stacking (-40° <
w < —80"). For RNA, w is quite stable for both FM and GG mismatch
(Figure 4A). The well-stacked structures of BisQ for GG mismatch
consist of 60%-80% of all structures generated during this timeframe
(Figure 4B, blue trace). In contrast, for FM RNA, this value drops
down to 1%-10% (Figure 4B, black trace).

For DNA, w is much more dynamic in this timeframe
(Figure 5A, 6 ns). For FM BisQ FIT-PNA:DNA duplex
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FIGURE 6 | Flow cytometry analysis in OC cells (SKOV3 and OVCA433) after incubation with 2 pm of modified and unmodified CCAT1 FIT-PNAs for 3 h at 37 °C.
Untreated cells from both cell lines served as control. (A) Histogram of FACS analysis in SKOV3 and OVCA433 cells treated with FIT-PNA. Histogram illustrates the mean
fluorescence intensity plotted in horizontal axis against the number of cell events detected in the vertical axis. (B) Mean fluorescence intensity of FIT-PNAs in SKOV3 and
OVCA433 cells. The Data is presented as the mean + SD (n = 2). *** represents p < 0.001, **represents p < 0.01 and * represents p < 0.05 as determined by a Two-

way ANOVA test.

(Figure 5A, black boxes for each 1 ns of simulation), the outer
quinoline ring of BisQ is initially well stacked in the duplex (ca.
80% of all structures during the first 2 ns) but gradually drops to
ca. 30% after 4 ns (Figure 5B, black trace). In contrast, the well-
stacked structures for GG mismatch DNA (Figure 5A, red boxes
for each 1 ns of simulation) consist of only ca. 30% and decrease
to ca. 18% during the remaining 5 ns of the simulation (Figure 5B
red trace).

Detection of CCAT1 FIT-PNA in Ovarian
Cancer (OC) Cells

To improve water solubility and cellular uptake, FIT-PNAs were
conjugated to a short positively charged peptide (4 D-Lysines, (D)
K,) at the C-terminus. We studied their ability to track IncRNA
CCAT]1 in two ovarian cancer cell lines: SKOV3, which expresses
high levels of CCAT1 (confirmed by RT-qPCR), and OVCA433,
which has minimal CCAT1 expression (Supplementary Figure
$27; Supplementary Table S4). Cells were treated with 2 pM of
modified and unmodified FIT-PNAs for 3 h at 37 °C, and
fluorescence was analyzed via flow cytometry (Figure 6). All
FIT-PNAs showed higher fluorescence in SKOV3 than in
OVCA433. Notably, cpG" FIT-PNA produced the strongest
signal in both cell lines, with an approximately 8-fold higher
fluorescence in SKOV3. It was the only modified probe that
outperformed the unmodified FIT-PNA in both cell types
(Supplementary Figure $28). In contrast, G and cpG FIT-
PNAs showed no significant difference from the unmodified
probe, indicating that these modifications offered no added
benefit when adjacent to BisQ.

Live-cell imaging (Figure 7; Supplementary Figures
§33-S34)  supported these findings: SKOV3  and

OVCA433 cells incubated with 2 uM FIT-PNAs for 5 h and
stained with Hoechst showed higher fluorescence for cpG" FIT-
PNA in SKOV3. In OVCA433, only minimal fluorescence was
observed for cpG" FIT-PNA, and signals from other probes were
undetectable. Overall, cpG" FIT-PNA was the most effective for
RNA detection in SKOV3 cells, with fluorescence levels
correlating with CCAT1 expression, demonstrating its
specificity and potential as a targeted probe for ovarian
cancer cells.

DISCUSSION

RNA plays a crucial role in regulating cellular processes, making
it a key target for diagnostic probes. Among these,
oligonucleotide-based probes, particularly FIT-PNAs (forced
intercalation peptide nucleic acids), stand out for their high
sensitivity and specificity. In FIT-PNA design, the surrogate
base (such as TO or BisQ) is typically placed centrally within
the sequence, and the FIT-PNA:RNA typically forms a stable
duplex despite BisQ/TO not participating in Watson-Crick-
Franklin hydrogen bonding.

Previously, we developed a CCAT1 FIT-PNA to detect this
oncogenic biomarker in colorectal cancer [18, 23]. However,
positioning BisQ with a guanine (G) monomer adjacent (3’
side) lacked certain features to reduce background
fluorescence. Our initial unmodified FIT-PNA showed only a
four-fold increase in fluorescence upon duplex formation with
RNA, with modest quantum yield, and negligible fluorescence in
ovarian cancer cell lines. Incorporating a cyclopentane-modified
PNA monomer (cpT) as a neighboring base to BisQ, improved
detection of another IncRNA (FLJ22447) [22], but the
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FIGURE 7 | Confocal microscopy images of modified and unmodified CCAT1 FIT-PNAs (red) in SKOV3 and OVCA433 cells, overlaid with DAPI nuclear staining
(blue). Scale bar = 50 pm. Cells were treated with 2 uM of FIT-PNAs for 5 h at 37 “C. Untreated cells of both cell lines served as control.

enhancement for CCAT1 using cpG was still limited compared to
cpT modified FL]J22447 FIT-PNA.

Introducing a combined backbone and base modification,
specifically, a guanine with methylation (cpG"), resulted in a
FIT-PNA with substantially improved performance. The cpG*
modification resulted in a 16-fold increase in fluorescence in
duplex form and raised the quantum yield to 19%. Importantly, in
live ovarian cancer cells overexpressing CCAT1, cpG* FIT-PNA
with a simple (D)K, peptide produced a robust fluorescence
signal, demonstrating cpG" FIT-PNA as a sensitive probe. This
simple, one-step methylation reaction on cpG offers a
straightforward route to enhance FIT-PNA brightness and
versatility, allowing effective targeting of challenging RNA
regions without compromising structural simplicity.

In addition to improved brightness, cpG" FIT-PNA exhibited
the lowest limit of detection (LOD) among unmodified and other
modified variants. For all FIT-PNAs, LOD values were lower
when hybridized with fully complementary RNA compared to
Gmm RNA. These findings align with the CD and T, data
(Figure 2; Supplementary Figure S21; Table 2) indicating
greater duplex stability with the matched RNA sequence. They
also demonstrate FIT-PNA’s ability to distinguish between a
complementary from non-complementary RNA sequence even
at low concentrations [68]. Notably, despite the lower LOD with
matched RNA, fluorescence intensities were consistently higher
when the FIT-PNA probes were hybridized to G, RNA across
various RNA concentrations (Supplementary Figure $26). This
correlates with the increased duplex fluorescence and higher UV
absorbance observed for the FIT-PNAs with G,,,,, RNA (Figures
2B, 3A; Supplementary Figures S17-S20).

Although cpG”, cpG, and G modifications led to stronger
fluorescence signals and improved detection sensitivity compared
to the unmodified FIT-PNA, they did not improve mismatch
discrimination (G-G mismatch RNA in particular).

British Journal of Biomedical Science | Published by Frontiers

In a recent study it was highlighted that introduction of a
second fluorescent base surrogate into a FIT probe enabled
discrimination of C to U editing in a transcript encoding the
glycine receptor (GlyR) [69]. Similarly, other systems such as
FRET-based probes and molecular beacons [70, 71] have also
shown promise in improving mismatch discrimination while
retaining sensitivity [72-74]. However, despite their high
specificity, these approaches often involve complex design
requirements, precise optimization of dye-dye interactions, and
reduced fluorescence brightness due to spectral overlap between
fluorophores. cpG" offers a straightforward design with robust
fluorescence performance and minimal structural complexity in
comparison to other RNA sensors.

The different fluorescence profiles for CCAT1 FIT-PNAs
hybridized to synthetic RNA and DNA was surprising for us.
However, molecular simulations (Figures 3B,D, 4, 5) allowed
us, for the first time, to gain insight into these results. Based
on these simulations, the G:G mismatch RNA:FIT-PNA
populates a more n-n stacked configuration for the outer
quinoline ring in BisQ (Scheme 2). This n-n stacking was
minimal for DNA and coincides with the lower fluorescence
for G:G mismatches in FIT-PNA:DNA duplexes (Figure 5).
In general, this tool may be expanded for other FIT-PNA
designs to achieve, a-priori, a brighter and more specific
RNA sensor.

Overall, the cpG* modification offers a balanced solution -
combining high brightness, ease of synthesis, and flexible design.
Its simplicity and robustness make cpG" FIT-PNA a promising
tool for RNA detection, enabling broader application in RNA
diagnostics and expanding the possibilities for sequence-specific,
live-cell RNA sensing. This work represents an advance in
biomedical science because it shows how one may improve the
RNA sensing performance of such FIT-PNAs by tailoring their
chemical structures.
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CONCLUSION

This study presents a significant advancement in RNA sensing:
the development of a cyclopentane- and positively charged cpG*-
modified FIT-PNA probe. The biophysical properties (BR, ¢,
LOD, and I/1,) and structural properties (Ty,, CD, and UV-Vis)
for cpG" FIT-PNA were studied with synthetic RNA and DNA.
Introducing the cpG" PNA monomer resulted in a substantial
increase in RNA sensing that was translated to detecting the
IncRNA CCAT1 in OC cancer cells (SKOV3). While challenges
like mismatch discrimination remain, the significant fluorescence
enhancement demonstrated its potential for highly sensitive and
specific RNA diagnostics. With its simple synthesis, broad design
flexibility, and imaging capabilities, the cpG" FIT-PNA
represents a transformative step forward in nucleic acid
detection technology. We are excited to explore its application
to a wider range of RNA biomarkers in future studies, paving the
way for more accurate and accessible molecular diagnostics.

SUMMARY TABLE
What Is Known About This Subject

e RNA sensing molecules have been developed for a variety of
biomedical indications such as identifying RNA biomarkers
related to disease.

e FIT-PNAs are a class of such RNA sensing molecules that
light up (fluoresce) upon RNA hybridization.

e FIT-PNAs have been shown to detect RNA biomarkers in
living cells as well as in tissues.

What This Paper Adds

e Chemically modified FIT-PNAs are shown to improve the
biophysical properties of these RNA sensors.

e Molecular modelling sheds light on the enhanced brightness
of these chemically modified FIT-PNAs with complementary
RNA as well as mismatched DNA and RNA sequences.

o cpG"' FIT-PNA detects a long non-coding RNA (CCTA1) in
living ovarian cancer cells and outperforms all other FIT-
PNA chemical variants.
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