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The poor solubility and permeability of Biopharmaceutics Classification System (BCS)
Class IV drugs pose major challenges to achieving sufficient oral bioavailability and
therapeutic efficacy. Improving drug dissolution is a key strategy to enhance
bicavailability, which in turn can enable more effective targeting of drugs to their site of
action. To address this, we formulated cefdinir, a model BCS Class IV compound, using
three amorphisation strategies; solid dispersions, mesoporous silica dispersions, and co-
amorphous systems to assess the impact of formulation on stability and dissolution.
Formulations were prepared via spray drying and solvent immersion using different drug-
to-polymer ratios, with miscibility predicted using Flory—Huggins theory. The amorphous
nature of each system was confirmed using differential scanning calorimetry (DSC),
polarised light microscopy (PLM), and powder X-ray diffraction (PXRD). Dissolution
studies revealed significantly enhanced drug release from all formulations compared to
crystalline cefdinir. Among them, solid dispersion and co-amorphous systems exhibited
the greatest improvement in dissolution rates, attributed to their ability to maintain
supersaturation and inhibit crystallisation via kinetic stabilisation. These systems also
showed better physical stability under non-sink aqueous conditions. However,
mesoporous silica dispersions demonstrated superior long-term stability, retaining over
95% drug content and preserving their amorphous structure across three storage
conditions (25 °C/0% RH, 40 °‘C/0% RH, and 40 °C/75% RH) for 6 months. This was
attributed to the confinement of the drug within silica pores and the absence of
hygroscopic excipients. Overall, this study highlights the distinct advantages of each
approach, emphasising the importance of balancing dissolution enhancement with solid-
state stability, and supports the use of theoretical modelling to guide rational formulation
design for poorly soluble drugs to improve oral bioavailability and enable more targeted
therapeutic outcomes.
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INTRODUCTION

Poor aqueous solubility remains one of the major challenges in
pharmaceutical development, particularly for many newly
discovered active pharmaceutical ingredients (APIs) [1]. The
rise of combinatorial chemistry in drug discovery has
contributed to a proliferation of lipophilic compounds that are
poorly soluble in water, often resulting in limited bioavailability
[2]. According to the Biopharmaceutics Classification System
(BCS), drugs are categorised into four classes based on their water
solubility and membrane permeability. BCS Class II compounds
are poorly soluble but highly permeable, while Class IV drugs
suffer from both poor solubility and low permeability, making
them the most difficult to formulate effectively [3]. Numerous
strategies have been developed to enhance the solubility of such
compounds, including micronisation [4-6], nanosuspensions
[7-9], and cyclodextrin complexation [10-12]. Among these,
amorphization, transforming a crystalline drug into its
amorphous form remains one of the most promising
approaches [13, 14]. The amorphous state lacks long-range
molecular order and possesses higher internal energy, leading
to improved apparent solubility and faster dissolution rates. This
can further affects their interaction with cells and tissues as
improving the physiochemical properties enhances their
cellular targeting characteristics [15] However, this form is
thermodynamically unstable and prone to recrystallisation
during manufacturing, storage, or even in vivo, which may
negate its solubility advantages [16, 17].

To overcome the inherent instability of amorphous drugs,
various glass solution systems have been developed using
stabilising excipients. The most widely studied approaches
include polymer-based amorphous solid dispersions (ASDs),
mesoporous  silica-based  systems, and co-amorphous
formulations, each designed to inhibit recrystallisation and
enhance the physical stability of the amorphous form [18].

ASDs involve dispersing one or more APIs at the molecular
level within hydrophilic polymer matrices. Stabilisation is
achieved through mechanisms such as kinetic hindrance of
crystallisation, elevation of the glass transition temperature
(Tg), specific drug-polymer interactions (e.g, hydrogen
bonding), and physical separation through molecular-level
mixing [18, 19] Mesoporous silica systems, including materials
such as SBA-15 (used in this study), colloidal silicon dioxide,
Neusilin®, and Florite®, stabilise amorphous drugs through
nanoconfinement within pores ranging from 2 to 50 nm. This
confinement reduces molecular mobility and prevents
recrystallisation. Additionally, surface silanol groups interact
with drug molecules, further enhancing stability [18, 20, 21].
Furthermore, the use of silica-based systems can prove helpful for
targeting applications, whether towards cancerous cells, colon
targeting, or magnetic targeting [22]. Co-amorphous systems, in
contrast, employ low molecular weight co-formers such as amino
acids, sugars, or urea to stabilise the amorphous phase. These co-
formers may act via intermolecular interactions, Tg
enhancement, or uniform molecular dispersion. Amino acids
are particularly favoured for their dual role in dissolution
enhancement and physical stabilisation [18, 23, 24].

Amorphous Cefdinir Stabilization Comparison

Across all these systems, the careful selection of a compatible
stabilising agent is critical to success. To aid in this, several
theoretical models have been proposed, including the
solubility parameter approach [25], Flory-Huggins interaction
theory [26], melting enthalpy-based miscibility predictions [27],
and molecular simulations [28]. These tools can provide valuable
insights during formulation design by predicting excipient-drug
compatibility and helping to optimise stability profiles.

The aim of this study is to comparatively evaluate the
effectiveness of three stabilisation strategies: amorphous solid
dispersions, mesoporous silica systems, and co-amorphous
formulations in maintaining the amorphous structure and
ensuring stability in both aqueous environments and the solid
state. Cefdinir, a third-generation broad-spectrum cephalosporin
antibiotic and a representative BCS Class IV drug, was selected as
the model compound due to its poor solubility and limited
permeability [29], which contribute to its low oral
bioavailability, reported to range between 21% and 25% [30].
To support rational formulation design, the Hansen solubility
parameter approach and Flory-Huggins theory were employed to
predict drug-excipient miscibility, thereby enabling the selection
of one optimised formulation from each stabilisation approach.
This theoretical framework allowed for a focused comparison of
their performance.

The selected formulations were then subjected to a range of
stability conditions, including accelerated stability testing (40 °C/
75% RH), dry storage (25 °C/0% RH and 40 °C/0% RH), and
aqueous incubation, in order to assess their resistance to
recrystallisation and chemical degradation over time. While
each method offers its own advantages, to our knowledge no
prior study has systematically compared these three strategies
across multiple performance dimensions, namely, dissolution
enhancement, physical stability, chemical stability, and thermal
resistance. This study aims to address this gap and identify the
most robust stabilisation system for improving the delivery of
poorly soluble and poorly permeable drugs such as cefdinir.

MATERIALS AND METHODS

Materials

Cefdinir was supplied by Lupin Co. Ltd. (India).
Polyvinylpyrrolidone K30 (PVP K30), hydroxypropyl
methylcellulose (HPMC 606), and Eudragit L100 were sourced
from Ashland Inc. (USA), Shin-Etsu (Japan), and Evonik
Industries (Germany), respectively. SBA-15 mesoporous silica
was purchased from Jiangsu XFNANO (China). L-arginine,
L-tryptophan and L-phenylalanine were obtained from Titan
Biotech LTD (India). All solvents and reagents were of
analytical grade.

Methods

Theoretical Miscibility Prediction

Theoretical miscibility predictions were conducted for a range of
stabilisers to guide the selection of optimal candidates for each
formulation strategy. These included polymers: PVP K30, HPMC
606, and Eudragit L100, for amorphous solid dispersions; SBA-15
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as the mesoporous silica carrier; and amino acids: L-arginine,
L-tryptophan, and L-phenylalanine for co-amorphous systems.
This predictive screening enabled the rational selection of the
most suitable stabiliser within each approach, thereby facilitating
a robust and systematic comparison across the three
amorphisation strategies.

Hansen Solubility Parameter Estimation

The Hansen Solubility Parameters (HSP) for cefdinir and all
excipients were calculated using the group contribution method
to assess drug—excipient miscibility. To determine the interaction
radius (Ra) according the following equation, three components
were evaluated: dispersion (8d), polarity (8p), and hydrogen
bonding (8h). Ra was calculated according to the following
equation [31]:

\]Ra = 4(8d" ~ 6d%)" + (8p! — 6p?)” + (oh' - 6h%)’

Smaller Ra values indicate improved miscibility. The results
informed excipient selection and corroborated observed
stabilisation trends. It was found that systems with values
below 7 MPa% are miscible, whereas those with values above
10 MPa¥ are likely to be immiscible [25].

Flory-Huggins Interaction Parameter Calculation

To further investigate the miscibility between cefdinir and each
excipient, Flory-Huggins theory was employed for
thermodynamic predictions of miscibility. This approach,
based on the difference in solubility parameters and molar
volume, allowed the calculation of the interaction parameter
() using the following equation [25]:

Vm
X=—
RT

8drug — Sexcepient)’

Where Vm is the molar volume of the drug (cm®/mol), R is the
gas constant (8.314 J/mol-K), T is the absolute temperature
(298 K), and ¢ denotes the total solubility parameter of the
drug and excipient, respectively, expressed in MPa'. The total
solubility parameters (8t) were calculated from the previously
determined Hansen components using the following

relation [31]:
8t = \/8d” + Op? + &h’

The molar volume of cefdinir was estimated using the group
contribution method. X values were calculated for PVP K30,
HPMC 606, Eudragit L100, SBA-15, and the amino acid
coformers (L-arginine, L-phenylalanine, and L-tryptophan),
and interpreted according to standard miscibility thresholds,
where x < 0.5 indicates good miscibility [25].

Formulation Preparation

Polymeric Amorphous Solid Dispersion (Selected:

PVP K30-Based)

Amorphous solid dispersions of cefdinir were prepared via spray-
drying, using PVP K30 as the polymeric carrier at a 1:2 (drug-to-

Amorphous Cefdinir Stabilization Comparison

polymer) weight ratio. This ratio was selected based on miscibility
calculations and our previous study, which demonstrated
enhanced dissolution performance across three biorelevant
media (pH 1.2, 4.5, and 6.8) [32]. The drug and polymer were
dissolved in deionised water adjusted to approximately
pH 7.0 using 1 N sodium hydroxide to ensure complete
solubilisation of the drug. The solution was then spray-dried
using a Biichi B-191 Mini Spray Dryer (Germany) under the
following conditions: inlet temperature 160 °C, outlet
temperature 83 ‘C = 6 °C, aspirator setting 100%, feed rate
5.3 + 0.2 mL/min, and airflow rate 600 L/h. The resulting
amorphous solid dispersions were collected, sealed in amber
glass vials, and stored in a desiccator until further analysis.

Preparation of Mesoporous Silica-Based System (Solvent
Immersion Method)

Cefdinir was loaded into mesoporous silica (SBA-15) using the
solvent immersion method. Based on our previous study,
solubility screening identified n-hexane as the most effective
solvent for drug loading, achieving a maximum efficiency of
37% w:w [33]. Accordingly, a cefdinir solution in n-hexane was
prepared at a concentration of 30 mg/mL and added to SBA-15
(25 mg) at a fixed silica-to-solution ratio of 1:1000 (w/v). The
mixture was stirred continuously for 24 h at room temperature
(25 °C) to facilitate adsorption of the drug into the mesoporous
matrix. Following incubation, the loaded silica was separated by
centrifugation at 8000 rpm for 30 min. The solid was then air-
dried under ambient conditions for 72 h, followed by oven-drying
at 60 ‘C until a constant weight was achieved. The final
cefdinir-SBA-15 formulation was stored in sealed glass vials
under dry conditions until further analysis.

Preparation of Co-Amorphous Formulation

Co-amorphous formulations of cefdinir were prepared using two
amino acid coformers, L-arginine and L-phenylalanine, at a 1:1:
1 M ratio. The components were dissolved in distilled water to
produce clear solutions, avoiding the use of organic solvents. The
resulting aqueous solution was spray-dried using a Biichi B-191
Mini Spray Dryer (Germany) under the following conditions:
inlet temperature 160 °C, outlet temperature 83 °C + 6 °C,
aspirator setting 100%, feed rate 5.3 + 0.2 mL/min, and
airflow rate 600 L/h. The dried powders were collected in
amber glass vials and stored in a desiccator until further
evaluation. The detailed composition of the three prepared
formulations is presented in Table 1.

Drug Content and Yield

The percentage yield of the prepared formulations was
determined by comparing the final weight of the dried
product to the total initial weight of the drug and excipients
used, using the following formula [32]:

Actual weight of dried product

Yield = ( )
feld Initial total weight of drug + excipient 00

Drug content was calculated as follows: a weighed amount of
each formulation, equivalent to 50 mg of cefdinir, was dissolved
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TABLE 1 | Compositions of the different prepared formulations.

Formulation F1 (polymeric solid dispersion)

Cefdinir 300 mg
Pvp-K30 600 mg
Na OH 30.35 mg
SBA-15 _
L- arginine _

L-phenylalanine

in 50 mL of phosphate buffer (pH 7.0), sonicated, filtered through
a 0.45 pm membrane filter, appropriately diluted, and analysed
using the pharmacopeial HPLC method. Analysis was carried out
on an HPLC apparatus (Jasco, Japan) equipped with a Knauer
C18 column (4.6 x 150 mm, packing L1) and a UV-VIS detector
(Model UV-970, Jasco, Japan). The mobile phase consisted of
methanol, tetrahydrofuran, and citric acid monohydrate solution
(111:28:1000, v/v), adjusted to pH 2.0 + 0.05 using phosphoric
acid. The flow rate was set at 1.4 mL/min, with an injection
volume of 15 pL, and detection was carried out at 254 nm. The
cefdinir content in each sample was quantified using the
following equation [34]:

Drug content (%)

_ (Sample peak area X Standard concentration X 100
 \ Standard peak area X Nominal conventration

Polarised Light Microscopy (PLM)

Polarised light microscopy (PLM) was employed as a preliminary
method to assess the crystallinity of the prepared formulations.
Samples were dispersed onto glass slides, and PLM was carried
out using a polarising microscope (Olympus BX41, USA)
at x40 magnification with crossed polarisers. Birefringence was
interpreted as indicative of residual or recrystallised crystalline
domains, whereas the absence of birefringence was considered
evidence of an amorphous structure [35, 36].

Thermal Stability Study

Thermal analysis of the formulations was conducted using a
differential scanning calorimeter (DSC 131; SETARAM, France)
to assess thermal behaviour and stability. Approximately 5 mg of
each sample was weighed and sealed in standard aluminium pans,
with an empty sealed pan used as a reference. Thermal scans were
run from 30 °C to 300 °C at a heating rate of 10 “C/min under a
nitrogen purge (50 mL/min). Although the DSC could
theoretically be started at lower temperatures, preliminary
studies and literature precedent indicate that no relevant
thermal transitions for cefdinir occur below 30 °C. For
example, in a previous study, thermal scans for other materials
were conducted from 25 °C without loss of relevant thermal
events [21]. Thermograms were analysed for melting endotherms
and glass transition temperature (Tg) events, providing insights
into the amorphous nature and thermal stability of cefdinir in the
formulations [37]. Each measurement was performed in triplicate
to ensure reproducibility.

F2 (mesoporous silica-based system)

Amorphous Cefdinir Stabilization Comparison

F3 (co-amorphous system)

300 mg 300 mg
507.5 mg :
_ 174.20 mg
165.19 mg

Powder X-Ray Diffraction (PXRD)

Pure cefdinir and all prepared formulations, including
drug-excipient mixtures, were characterised using X-ray
diffraction (XRD) with a Bruker D8 Advance diffractometer
(West  Germany), equipped with a  germanium
monochromator and a copper radiation source filtered
through nitrogen. The instrument was operated at 50 kV and
30 mA. Diffraction patterns were recorded over a 20 range of
5°-60° to assess the physical state of cefdinir within the
formulations relative to the pure drug [37].

Dissolution Studies

The dissolution behaviour of cefdinir in the prepared
formulations was evaluated using USP Apparatus II (paddle
method) on a PT-DT7 dissolution tester (Pharma Test,
Germany). Tests were conducted at 50 rpm and 37 °C +
0.2 °C, using 900 mL of dissolution medium to simulate
gastrointestinal conditions: HCI buffer (pH 1.2), acetate buffer
(pH 4.5), and phosphate buffer (pH 6.8). These three media were
selected to represent the varying pH environments of the
human gastrointestinal tract, enabling assessment of pH-
dependent solubility, dissolution kinetics, and formulation
performance across physiologically relevant conditions. An
amount equivalent to 300 mg of cefdinir was used per test.
Aliquots (5 mL) were withdrawn at predetermined time
intervals (2, 5, 10, 15, 20, 30, 45, and 60 min), filtered
through a 0.45 pm syringe filter, and replaced with an equal
volume of fresh medium to maintain sink conditions. The
concentration of cefdinir released was determined using
UV-VIS spectrophotometry (T80, PG Instruments, UK) at
280 nm, 286 nm, and 287 nm for HCI, acetate, and
phosphate buffers, respectively. Each dissolution profile
represents the mean of three replicates, and statistical
comparisons made between formulations [34].
Although saturated solubility measurements were not
explicitly performed, the dissolution medium volumes were
selected to be at least 3-5 times greater than the expected
maximum solubility of cefdinir, and aliquot replacement was
used to approximate sink conditions. This approach ensured
that the formulations remained fully dissolved throughout the
testing period.

were

Chemical Stability Studies

Chemical Stability

The chemical stability of cefdinir in the formulations was assessed
by quantifying drug degradation under accelerated storage
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conditions. Samples collected at 3 and 6 months were analysed for
cefdinir content using the validated HPLC method
described earlier.

Physical Stability Study

Aqueous Solutions

The physical stability of amorphous cefdinir was assessed in
selected formulations under non-sink conditions, designed to
mimic physiological stress during administration. Samples
containing 300 mg of cefdinir were suspended in 250 mL of
distilled water at 37 °C + 0.5 °C, using USP Apparatus II (paddle
method) at 50 rpm. Aliquots (5 mL) were withdrawn at specific
time intervals (2, 5, 10, 15, 20, 30, 45, 60, 120, and 180 min),
filtered immediately through a 0.45 um membrane filter, diluted,
and analysed using a UV-VIS spectrophotometer (T80, PG
Instruments, UK) at 287 nm. Each sample withdrawal was
followed by replacement with an equal volume of distilled
water. The data were interpreted in terms of the tendency of
amorphous cefdinir to recrystallise during early dissolution in
aqueous suspension.

Solid State

The physical stability of amorphous cefdinir in the selected
formulations was further investigated under accelerated
storage conditions at three environmental settings that
included 25 “C/0% relative humidity (RH), 40 “C/0% RH, and
40 °C/75% RH. Zero humidity was maintained using phosphorus
pentoxide (P,Os) in desiccators placed in ovens, while high
humidity conditions (75% RH) were achieved using saturated
sodium chloride (NaCl) solutions in desiccators kept at 40 “C. All
samples were stored in the dark and analysed at predefined
intervals: 1 week, 2 weeks, 1 month, 2 months, 3 months, and
6 months. PXRD was employed to monitor physical changes,
specifically recrystallisation.

Statistical Analysis

Statistical analyses were performed using SPSS version
28 software. One-way analysis of variance (ANOVA) followed
by Tukey’s post hoc test was used to assess differences between
groups. All experiments were conducted in triplicate. Data are
presented as mean =+ standard deviation (SD), and a
p-value <0.05 was considered statistically significant.

RESULTS

Hansen Solubility Parameters (HSPs)

Table 2 presents the calculated Hansen Solubility Parameters (§)
and Ra values between cefdinir and each excipient. A lower Ra
indicates stronger molecular affinity. Among the polymers,
HPMC 606 and PVP K30 exhibited the strongest compatibility
with cefdinir, while Eudragit L100 showed borderline
compatibility, as reflected by its relatively higher Ra. SBA-15
displayed the highest Ra, indicative of poor miscibility, consistent
with its expected role as a passive matrix rather than an
interacting carrier. Of the amino acids evaluated, L-tryptophan
and L-phenylalanine showed Ra values closest to cefdinir,

Amorphous Cefdinir Stabilization Comparison

suggesting favourable interactions, whereas L-arginine
exhibited a higher Ra, reflecting less favourable solubility-
based compatibility (Table 2). The Flory-Huggins interaction
parameter (X) values, summarised in Table 3, provide
complementary insight into the thermodynamic miscibility
between cefdinir and each excipient. A x value <0.5 indicates
thermodynamic compatibility [31]. All polymers displayed x
values below this threshold, with HPMC 606 showing the
lowest x (0.076), followed by PVP K30 and Eudragit L100,
confirming favourable miscibility. Similarly, all amino acids
demonstrated x < 0.5, indicating good miscibility; notably,
L-arginine had the lowest x value (0.260), suggesting the
strongest predicted thermodynamic compatibility among the
amino acids tested.

These results collectively indicate that both HSP and
Flory-Huggins analyses predict strong miscibility of cefdinir
with selected polymers and certain amino acids, whereas SBA-
15 is likely to act primarily as a physical carrier rather than a
solubility-enhancing excipient.

Drug Content and Yield

Table 4 presents the production yield and drug content of the
selected formulations (F1-F3). All formulations demonstrated
high drug content with acceptable standard deviations,
confirming uniform drug incorporation: 97.99% =+ 2.75% for
F1, 98.72% + 2.92% for F2, and 99.33% + 3.85% for F3. The
highest production yield was observed for F3 at 84.47%,
followed by F2 at 82.04%, while F1 showed the lowest yield
of 78.56%.

Polarized Light Microscopy (PLM)

PLM was employed as a preliminary screening tool to assess the
solid-state form of cefdinir within the formulations. Pure
cefdinir displayed characteristic acicular crystals with strong
birefringence (Figure 1A). In contrast, the PVP K30-based
solid dispersion (F1) showed no birefringence (Figure 1B),
indicating successful amorphisation of the drug. Similarly, the
co-amorphous formulation (F3) exhibited complete absence of
birefringence (Figure 1D). Yet, no cefdinir crystals were
detected in the SBA-15-based formulation (F2) (Figure 1C),
implying molecular dispersion of the drug within the
silica matrix.

Thermal Stability via DSC

The DSC thermogram of pure cefdinir (Figure 2) revealed a
minor endothermic event around 65 °C corresponding to the
glass transition temperature, followed by a sharp exothermic peak
near 229.5 °C attributable to decomposition-associated melting.
These observations align with known thermal behaviour of
anhydrous cefdinir [38]. In contrast, none of the formulated
systems (F1-F3) showed this high-temperature exothermic event,
indicating suppression of thermal degradation through
amorphisation and matrix stabilisation. While subtle baseline
deviations were observed in the low-temperature region for the
formulations, these transitions were broad and poorly defined,
preventing reliable Tg determination under the applied
experimental conditions.
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TABLE 2 | Results of Hansen solubility parameter calculations.

Amorphous Cefdinir Stabilization Comparison

Material 84 (MPa%%) 5, (MPa%%) 8n (MPa%%) R, vs. cefdinir (MPa®%)
Cefdinir 17.29 8.2 1.2
Polymers
PVP-K30 18.5 8.0 12.0 411
HPMC-606 17.4 10.2 10.9 3.93
Eudragit L100 17.6 9.5 6.9 5.32
Mesoporous silica
SBA-15 15.2 3.0 8.0 7.92
Amino acids

L- arginine 16.8 14.2 17.5 4.77
L- phenylalanine 18.3 8.4 11.2 3.25
L- tryptophan 17.9 10.5 12.4 2.94

TABLE 3 | The calculated Flory-Huggins interaction parameters (x) between
cefdinir and all the studied stabilizing agents.

Cefdinir- excipient pair X value
Cefdinir-PVP K30 0.098
Cefdinir—-HPMC 606 0.076
Cefdinir-Eudragit L100 0.135
SBA-15 NA
L-Arginine 0.260
L-Tryptophan 0.321
L-Phenylalanine 0.297

TABLE 4 | Results of yield and drug content of the selected formulations.

Formulation Yield (%) Drug content (%)
F1 78.56 97.986 + 2.745
F2 82.04 98.11 + 1.92
F3 84.473 99.330 + 3.849

X-Ray Powder Diffraction
The PXRD pattern of pure cefdinir (Figure 3) exhibited sharp,

intense peaks at 20 values of 5.85°, 11.7°, 16.1°, 21.15°, 22.25°, 24.4°,
26.2°, and 28.8", consistent with previous reports [39]. Conversely,
the diffraction patterns for F1, F2, and F3 showed complete
disappearance of sharp Bragg peaks, replaced by broad halos.
This confirms the transformation of cefdinir into an amorphous
state in all three formulations.

Dissolution Studies

Dissolution profiles for formulations F1, F2, and F3 were
evaluated in three media: HCl buffer (pH 1.2), acetate buffer
(pH 4.5), and phosphate buffer (pH 6.8), as shown in Figures
4A-C respectively. In HCL, cefdinir showed the lowest release
(72.72% =+ 3.22%) after 60 min, while the release increased for F2
(92.95 + 1.93) and F3 (97.81 + 3.65) with the highest release
achieved using F1 (99.33 + 3.05). Yet, when the acetate buffer was
used, F3 presented the highest release (97.81 + 7.34) followed by
93.73% + 7.1%, 72.99 + 1.53, and 56.23 * 6.6, for F1, F2, and pure
cefdinir, respectively. However, when phosphate buffer was used,
a similar trend to HCl medium was observed: F1 presented the

highest release (103.45% + 1.3%), while F2 and F3 showcased
similar release results 100.34% # 1.01% and 100.98 + 1 for F2 and
F3, respectively. Statistical analysis using Student’s t-test at each
time point revealed that all formulations significantly improved
drug release compared to pure cefdinir, corroborating our earlier
studies [32, 33]. In both HCI and acetate buffers, formulations
F1 and F3 outperformed F2, particularly during the initial three
sampling intervals. However, no significant differences in
dissolution were observed among the formulations in
phosphate buffer.

Stability Studies

Physical

Physical stability under non-sink aqueous conditions is presented
in Figure 5. All formulations showed markedly higher solubility
than crystalline cefdinir. Formulations F1 and F3 sustained drug
concentrations at or near saturation throughout the testing
period, demonstrating effective inhibition of recrystallisation.
Although F2 initially showed a rapid increase in solubility, this
was followed by a gradual decline, suggesting less effective
maintenance of supersaturation.

Solid-state stability was further examined by PXRD after
storage under various conditions (Figures 6-8). Under dry
conditions (25 °C/0% RH and 40 °C/0% RH), both F1 and
F3 remained amorphous with no evidence of recrystallisation.
However, exposure to elevated humidity (40 “C/75% RH) led to
partial recrystallisation in F1 and F3 after six and 2 months
respectively. In contrast, F2 maintained its amorphous form
throughout 6 months regardless of storage humidity, with
PXRD patterns showing no crystalline peaks. These findings
indicate superior physical stability for F2 in comparison to the
other formulations.

Chemical

Chemical stability profiles over 6 months are illustrated in
Figure 9. Under dry storage conditions (25 °C/0% RH and
40 °C/0% RH), all formulations retained more than 95% of
cefdinir content, with no significant degradation detected.
However, under accelerated humidity (40 °C/75% RH),
significant drug degradation occurred (p < 0.05) in F1 and F3,
with drug contents reduced to 47.39% + 3.41% and 52.17% * 6%
respectively. In contrast, F2 retained 97.04% + 1.97% of the drug
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FIGURE 1 | PLM images for: pure cefdinir (A), F1 (B), F2 (C) and F3 (D).

DSC Thermograms: Pure Cefdinir and Formulations (F1, F2, F3)
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FIGURE 2 | DSC thermograms of pure cefdinir, F1, F2, and F3 highlighting the exothermic activity.
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with a higher significant amount (p < 0.05), highlighting its
markedly enhanced chemical stability under humid conditions.

DISCUSSION

The compatibility of cefdinir with polymeric, mesoporous, and
co-amorphous stabilisers was assessed using the Hansen
Solubility ~ Parameter (HSP) approach alongside the
Flory-Huggins interaction parameter (x) model. These
theoretical frameworks serve as valuable preformulation tools,
enabling the prediction of drug-excipient miscibility and guiding
the selection of stabilisers for amorphous formulations. Based on
the HSP analysis, low Ra values (<5 MPa”) indicated that PVP
K30, HPMC 606, and all amino acids studied are highly
compatible with cefdinir. This observation was further
supported by Flory-Huggins x values, which confirmed
miscibility for all polymer-based systems (x < 0.14). Among
the polymers, HPMC 606 exhibited the lowest x value (0.076),
highlighting its potential as an effective stabiliser for amorphous
cefdinir. Despite this, PVP K30 was selected for the polymer-

40 50 60

26 (degrees)

FIGURE 3 | PXRD of: pure cefdinir, F1 (PVP-K30 based formulation), F2 (SBA-15-based), and F3 (Co-amorphous formulation) directly after preparation.

based solid dispersion (F1), based on prior studies demonstrating
its superior dissolution profile across multiple gastrointestinal-
relevant media [32]. Moreover, the molecular weight-dependent
solubility characteristics of PVP favour the formation of solid
solutions, offering practical advantages for formulation
development and processing [40].

The mesoporous silica SBA-15, in contrast, demonstrated
poor solubility-based compatibility (high Ra), indicating that
its primary role in formulations is likely as a physical carrier
for controlled release rather than as a molecular stabiliser. The
amino acids, particularly L-tryptophan and L-phenylalanine, are
predicted to interact favourably with cefdinir, potentially serving
as co-amorphous stabilisers or crystallisation inhibitors, although
L-arginine’s high polarity may limit miscibility unless ionic
interactions are exploited. Collectively, these findings
underscore the utility of HSP and Flory-Huggins analyses in
rational excipient selection, providing predictive guidance that
complements experimental formulation studies. By integrating
these theoretical models with prior dissolution and processing
data, the selection of stabilisers such as PVP K30 can be optimised
for developing stable, amorphous cefdinir formulations.
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FIGURE 4 | Drug release studies from pure cefdinir and the selected formulations in: (A) HCI buffer pH 1.2, (B) Acetate buffer pH 4.5, and (C) Phosphate
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FIGURE 5 | Results of physical stability in aqueous media.

All three formulations achieved high drug content with
acceptable standard deviations, confirming effective drug
incorporation regardless of the stabilisation strategy employed
(F1: 97.99% + 2.75%; F2: 98.72% + 2.92%; F3: 99.33% + 3.85%).
This indicates that both spray drying (used for F1 and F3) and
solvent immersion (used for F2) produced uniform and
consistent products. Regarding process yield, the co-
amorphous system (F3) achieved the highest yield at 84.47%,
likely due to enhanced powder recovery from improved
flowability and reduced stickiness of amino acid-based
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matrices during spray drying. SBA-15 (F2) demonstrated a
high yield of 82.04%, confirming the viability of the solvent
immersion method despite a comparatively low drug loading
of 37.18%. The PVP K30-based solid dispersion (F1) showed the
lowest yield at 78.56%, probably owing to product adherence
within the spray dryer chamber or collection losses commonly
associated with hydrophilic polymers. Taken together, these
findings indicate all systems effectively incorporate the drug,
with F3 offering the best process recovery and F2 providing
an excellent balance between yield, drug content, and defined
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PXRD Pattern for F1 After Storing at 25°C / 0% RH
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FIGURE 6 | Physical stability results at solid state of formula F1.

loading, making both promising candidates for further
development. While saturated solubility studies were not
explicitly conducted, the dissolution media volumes were
deliberately chosen to exceed the expected maximum solubility
of cefdinir, and aliquot replacement ensured that drug
concentrations remained well below saturation throughout
testing. The complete dissolution of all formulations across the
testing period indicates that sink conditions were effectively
maintained, supporting reliable interpretation of dissolution
kinetics. Although direct solubility measurements could
provide additional confirmation, the current approach
provides a robust and practical assessment of formulation
performance.

Polarised light microscopy (PLM) further confirmed
successful amorphisation of cefdinir in all three formulations.
The PVP-based solid dispersion (F1) exhibited no birefringence,
as expected from typical amorphous solid dispersions [36, 41, 42].
Although SBA-15 (F2) is structurally amorphous, it displayed
birefringence under PLM due to the hexagonally ordered
mesoporous structure, which can cause anisotropic light
transmission mimicking birefringence  [36, 43, 44].
Importantly, no visible cefdinir crystals were detected in the
F2 images, suggesting effective confinement of the drug in an

40 50 60

26 (degrees)

amorphous state within the mesoporous matrix. The co-
amorphous formulation (F3) showed zero birefringence,
indicating the formation of a homogeneous amorphous blend
with the amino acid coformers. These observations align well
with the theoretical predictions from the Hansen and
Flory-Huggins models, which suggest strong miscibility
between cefdinir and both polymeric and amino acid-based
carriers. Thus, PLM confirmed the successful amorphisation of
cefdinir across all three systems, supporting their further
evaluation in stability and dissolution studies.

Thermal analysis by DSC was primarily employed to evaluate
the thermal behaviour and degradation profile of cefdinir in its
crystalline form compared with the processed formulations,
rather than to resolve subtle glass transition events. Pure
crystalline cefdinir exhibited a sharp exothermic peak at
approximately 229.5 °C (Figure 2), which is attributed to
thermal decomposition occurring during melting, likely
initiated by nucleophilic attack on the P-lactam ring, as
reported previously for cephalosporins [45]. This degradation-
associated thermal event reflects the inherent thermal instability
of crystalline cefdinir. In contrast, none of the formulated systems
(F1-F3) displayed this exothermic peak across the scanned

temperature range, indicating suppression of thermally
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PXRD Pattern for F2 After Storing at 25°C / 0% RH
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FIGURE 7 | Physical stability results at solid state of formula F2.

induced degradation following formulation. In the PVP K30-
based solid dispersion (F1), drug-polymer hydrogen bonding
and reduced molecular mobility are likely responsible for
inhibiting degradation pathways. For the SBA-15 formulation
(F2), nanoscale confinement within mesoporous channels
physically restricts molecular rearrangement and limits
thermal decomposition. In the co-amorphous system (F3),
stabilisation is attributed to hydrogen bonding and ionic
interactions between cefdinir and the amino acid coformers,
which further reduce molecular mobility during heating. These
observations are consistent with previous reports demonstrating
enhanced thermal stability of drugs formulated as polymeric solid
dispersions, mesoporous silica systems, and co-amorphous
mixtures [46-51].

Although minor baseline deviations were observed for the
formulations at lower temperatures, these events were broad and
poorly resolved and could not be reliably assigned to distinct glass
transition temperatures (Tg). This behaviour is typical of
multicomponent amorphous systems, where overlapping
relaxation processes, compositional heterogeneity, and strong
drug-excipient interactions often obscure discrete Tg signals,
particularly under conventional DSC conditions. As such, the
absence of clearly defined Tg transitions does not contradict the
amorphous nature of the formulations.

To confirm the solid-state form suggested by DSC, X-ray
powder diffraction (XRPD) analysis was conducted subsequently

26 (degrees)

on pure cefdinir and all processed formulations. XRPD results
demonstrated the complete absence of characteristic
crystalline cefdinir diffraction peaks in all formulations
(Figure 3), confirming successful amorphisation and
corroborating the DSC findings. Taken together, DSC and
XRPD provide complementary evidence that formulation
effectively stabilised cefdinir by eliminating crystalline
melting and degradation behaviour while maintaining the
drug in an amorphous state. X-ray powder diffraction
(PXRD) analysis reinforced these findings, showing the
absence of sharp diffraction peaks characteristic of
crystalline cefdinir in all formulations (Figure 3). This
complements the PLM results and confirms the effective
conversion of cefdinir into its amorphous form at the time
of preparation.

The enhanced dissolution profiles observed for all three
formulations compared to pure cefdinir are primarily
attributed to amorphisation. The amorphous form possesses
higher molecular mobility and internal energy, leading to
increased apparent solubility and faster dissolution rates [16,
17]. These solid-state changes are crucial in overcoming the poor
solubility inherent to crystalline cefdinir. Additionally, chemical
modifications in formulations F1 and F3 further contributed to
improved dissolution performance: F1 formed a sodium salt that
increased ionic character at low pH, while F3’s arginine salt
enhanced solubility via ionisation. Together, these solid-state and
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chemical alterations effectively address cefdinir’s intrinsic
solubility limitations.

The improved physical stability in aqueous media observed
for F1 and F3 is likely due to their ability to inhibit
recrystallisation and maintain cefdinir in solution. PVP
K30 and amino acids such as arginine and phenylalanine
increase cefdinir’s solubility and prevent crystallisation
caused by supersaturation through kinetic stabilisation and
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salt formation [50, 52, 53]. Conversely, SBA-15 (F2) failed to
maintain amorphous stability in solution, evidenced by a
decrease in drug concentration after 10 min. This
instability may arise from rapid drug release causing
transient supersaturation and subsequent recrystallisation.
Water penetrating the silica structure might expel the drug,
leading to precipitation. Hence, while mesoporous silica
facilitates rapid dissolution, it does not adequately suppress
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recrystallisation under non-sink aqueous conditions unless
combined with nucleation or crystal growth inhibitors.

The solid-state amorphous stability of the formulations was
influenced by both the stabilising matrix and storage conditions.
F1 and F3 maintained amorphous stability for extended periods
under dry conditions, likely due to polymer viscosity and ionic
interactions restricting molecular mobility [54, 55]. Increases in
glass transition temperature (Tg) and strong excipient-drug
interactions outweighed any crystallisation tendencies [18].
However, neither formulation resisted recrystallisation at 75%
relative humidity (RH), probably because moisture absorption by
hygroscopic PVP K30 and amino acids reduced Tg and induced
phase separation [56]. In contrast, F2 performed best under both
dry and humid conditions. The mesoporous structure of SBA-15
physically limited drug mobility through nanoconfinement and
possibly formed chemical bonds with silanol groups on the silica
surface, as the negatively charged silica surface favours forming
hydrogen bonds with molecules [57-59]. PXRD analysis showed
no recrystallisation for 6 months, even below 75% RH,
demonstrating excellent silica-mediated stability.

Chemical stability studies showed all three formulations remained
stable for 6 months under dry storage, with drug content decreasing
by less than 5%, meeting ICH guidelines [20]. However, under
accelerated humid conditions (40 °C/75% RH), F1 and F3 underwent
significant degradation (P < 0.05), likely due to moisture sorption by
hygroscopic components (PVP K30 and amino acids), which
facilitated degradation. In contrast, the SBA-15-based formulation
(F2) remained highly stable even in humid conditions, presumably
because drug confinement within silica pores minimised exposure to
moisture and physical isolation from degradation initiators. This
aligns with previous reports indicating that silica carriers enhance
chemical stability by restricting molecular mobility and protecting
against hydrolysis [60-62] The superior stability of F2 not only
ensures consistent drug release but also supports its potential for
targeted oral delivery, as the drug remains protected until it reaches
the intended site of action. Furtehrmore, mesoporous-based systems
have been reported for targeting cellular organelles such as the
mitochondria [63], which gives them an additional benefit for
targeting applications. Therefore, F2 is the most chemically stable
formulation, while F1 and F3 require protection from moisture.

CONCLUSION

This study presents a detailed comparison of three amorphisation
strategies to enhance the dissolution and stability of cefdinir, a poorly
water-soluble antibiotic: polymer-based solid dispersion (PVP K30),
mesoporous silica (SBA-15), and co-amorphous formulations with
L-arginine and L-phenylalanine. Hansen solubility parameters and
Flory-Huggins interaction theory were used to predict drug—carrier
compatibility and guide stabiliser selection. Experimental results
confirmed complete amorphisation in all formulations, with
polymeric and co-amorphous systems demonstrating superior
dissolution compared to the mesoporous silica-based formulation.
Stability studies showed that amorphisation enhanced cefdinir’s
thermal stability and slowed recrystallisation. However, long-term
stability testing under revealed clear differences: the mesoporous

Amorphous Cefdinir Stabilization Comparison

silica system exhibited excellent chemical and physical stability, even
in humid environments, due to molecular confinement within the
silica matrix. Conversely, the polymer and co-amorphous
formulations were less stable under humid conditions, likely due
to the hygroscopic nature of their stabilisers. These findings highlight
the importance of choosing formulation strategies according to the
required stability profile and storage conditions. The enhanced
stability of the silica-based formulation also supports its potential
for targeted delivery, ensuring the drug remains protected until
reaching intended site. The study further reinforces the valuable
role of theoretical modelling in the rational design of amorphous
drug formulations.

SUMMARY TABLE
What Is Known About This Subject

« Amorphisation improves drug solubility and dissolution
but requires careful stabiliser selection.

« Polymeric, mesoporous silica, and co-amorphous systems
are common approaches to stabilise drugs.

o Theoretical models help predict drug-excipient
compatibility to optimise formulation design.

What This Paper Adds
o Theoretical modelling effectively guided selection of
compatible stabilisers, confirmed by experiments.
o All three strategies fully amorphised cefdinir, with polymer
and co-amorphous systems enhancing dissolution.
« Mesoporous silica offered superior chemical and physical
stability under humid conditions despite slower release.

CONCLUDING STATEMENT

This work represents an advance in biomedical science by
demonstrating how rational selection of amorphisation
strategies, guided by theoretical modelling, can optimise drug
dissolution and stability, ultimately enhancing formulation
design for poorly soluble medicines.
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