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The poor solubility and permeability of Biopharmaceutics Classification System (BCS) 
Class IV drugs pose major challenges to achieving sufficient oral bioavailability and 
therapeutic efficacy. Improving drug dissolution is a key strategy to enhance 
bioavailability, which in turn can enable more effective targeting of drugs to their site of 
action. To address this, we formulated cefdinir, a model BCS Class IV compound, using 
three amorphisation strategies; solid dispersions, mesoporous silica dispersions, and co- 
amorphous systems to assess the impact of formulation on stability and dissolution. 
Formulations were prepared via spray drying and solvent immersion using different drug- 
to-polymer ratios, with miscibility predicted using Flory–Huggins theory. The amorphous 
nature of each system was confirmed using differential scanning calorimetry (DSC), 
polarised light microscopy (PLM), and powder X-ray diffraction (PXRD). Dissolution 
studies revealed significantly enhanced drug release from all formulations compared to 
crystalline cefdinir. Among them, solid dispersion and co-amorphous systems exhibited 
the greatest improvement in dissolution rates, attributed to their ability to maintain 
supersaturation and inhibit crystallisation via kinetic stabilisation. These systems also 
showed better physical stability under non-sink aqueous conditions. However, 
mesoporous silica dispersions demonstrated superior long-term stability, retaining over 
95% drug content and preserving their amorphous structure across three storage 
conditions (25 °C/0% RH, 40 °C/0% RH, and 40 °C/75% RH) for 6 months. This was 
attributed to the confinement of the drug within silica pores and the absence of 
hygroscopic excipients. Overall, this study highlights the distinct advantages of each 
approach, emphasising the importance of balancing dissolution enhancement with solid- 
state stability, and supports the use of theoretical modelling to guide rational formulation 
design for poorly soluble drugs to improve oral bioavailability and enable more targeted 
therapeutic outcomes.
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INTRODUCTION

Poor aqueous solubility remains one of the major challenges in 
pharmaceutical development, particularly for many newly 
discovered active pharmaceutical ingredients (APIs) [1]. The 
rise of combinatorial chemistry in drug discovery has 
contributed to a proliferation of lipophilic compounds that are 
poorly soluble in water, often resulting in limited bioavailability 
[2]. According to the Biopharmaceutics Classification System 
(BCS), drugs are categorised into four classes based on their water 
solubility and membrane permeability. BCS Class II compounds 
are poorly soluble but highly permeable, while Class IV drugs 
suffer from both poor solubility and low permeability, making 
them the most difficult to formulate effectively [3]. Numerous 
strategies have been developed to enhance the solubility of such 
compounds, including micronisation [4–6], nanosuspensions 
[7–9], and cyclodextrin complexation [10–12]. Among these, 
amorphization, transforming a crystalline drug into its 
amorphous form remains one of the most promising 
approaches [13, 14]. The amorphous state lacks long-range 
molecular order and possesses higher internal energy, leading 
to improved apparent solubility and faster dissolution rates. This 
can further affects their interaction with cells and tissues as 
improving the physiochemical properties enhances their 
cellular targeting characteristics [15] However, this form is 
thermodynamically unstable and prone to recrystallisation 
during manufacturing, storage, or even in vivo, which may 
negate its solubility advantages [16, 17].

To overcome the inherent instability of amorphous drugs, 
various glass solution systems have been developed using 
stabilising excipients. The most widely studied approaches 
include polymer-based amorphous solid dispersions (ASDs), 
mesoporous silica-based systems, and co-amorphous 
formulations, each designed to inhibit recrystallisation and 
enhance the physical stability of the amorphous form [18].

ASDs involve dispersing one or more APIs at the molecular 
level within hydrophilic polymer matrices. Stabilisation is 
achieved through mechanisms such as kinetic hindrance of 
crystallisation, elevation of the glass transition temperature 
(Tg), specific drug–polymer interactions (e.g., hydrogen 
bonding), and physical separation through molecular-level 
mixing [18, 19] Mesoporous silica systems, including materials 
such as SBA-15 (used in this study), colloidal silicon dioxide, 
Neusilin®, and Florite®, stabilise amorphous drugs through 
nanoconfinement within pores ranging from 2 to 50 nm. This 
confinement reduces molecular mobility and prevents 
recrystallisation. Additionally, surface silanol groups interact 
with drug molecules, further enhancing stability [18, 20, 21]. 
Furthermore, the use of silica-based systems can prove helpful for 
targeting applications, whether towards cancerous cells, colon 
targeting, or magnetic targeting [22]. Co-amorphous systems, in 
contrast, employ low molecular weight co-formers such as amino 
acids, sugars, or urea to stabilise the amorphous phase. These co- 
formers may act via intermolecular interactions, Tg 
enhancement, or uniform molecular dispersion. Amino acids 
are particularly favoured for their dual role in dissolution 
enhancement and physical stabilisation [18, 23, 24].

Across all these systems, the careful selection of a compatible 
stabilising agent is critical to success. To aid in this, several 
theoretical models have been proposed, including the 
solubility parameter approach [25], Flory–Huggins interaction 
theory [26], melting enthalpy-based miscibility predictions [27], 
and molecular simulations [28]. These tools can provide valuable 
insights during formulation design by predicting excipient–drug 
compatibility and helping to optimise stability profiles.

The aim of this study is to comparatively evaluate the 
effectiveness of three stabilisation strategies: amorphous solid 
dispersions, mesoporous silica systems, and co-amorphous 
formulations in maintaining the amorphous structure and 
ensuring stability in both aqueous environments and the solid 
state. Cefdinir, a third-generation broad-spectrum cephalosporin 
antibiotic and a representative BCS Class IV drug, was selected as 
the model compound due to its poor solubility and limited 
permeability [29], which contribute to its low oral 
bioavailability, reported to range between 21% and 25% [30]. 
To support rational formulation design, the Hansen solubility 
parameter approach and Flory–Huggins theory were employed to 
predict drug–excipient miscibility, thereby enabling the selection 
of one optimised formulation from each stabilisation approach. 
This theoretical framework allowed for a focused comparison of 
their performance.

The selected formulations were then subjected to a range of 
stability conditions, including accelerated stability testing (40 °C/ 
75% RH), dry storage (25 °C/0% RH and 40 °C/0% RH), and 
aqueous incubation, in order to assess their resistance to 
recrystallisation and chemical degradation over time. While 
each method offers its own advantages, to our knowledge no 
prior study has systematically compared these three strategies 
across multiple performance dimensions, namely, dissolution 
enhancement, physical stability, chemical stability, and thermal 
resistance. This study aims to address this gap and identify the 
most robust stabilisation system for improving the delivery of 
poorly soluble and poorly permeable drugs such as cefdinir.

MATERIALS AND METHODS

Materials
Cefdinir was supplied by Lupin Co. Ltd. (India). 
Polyvinylpyrrolidone K30 (PVP K30), hydroxypropyl 
methylcellulose (HPMC 606), and Eudragit L100 were sourced 
from Ashland Inc. (USA), Shin-Etsu (Japan), and Evonik 
Industries (Germany), respectively. SBA-15 mesoporous silica 
was purchased from Jiangsu XFNANO (China). L-arginine, 
L-tryptophan and L-phenylalanine were obtained from Titan 
Biotech LTD (India). All solvents and reagents were of 
analytical grade.

Methods
Theoretical Miscibility Prediction
Theoretical miscibility predictions were conducted for a range of 
stabilisers to guide the selection of optimal candidates for each 
formulation strategy. These included polymers: PVP K30, HPMC 
606, and Eudragit L100, for amorphous solid dispersions; SBA-15 
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as the mesoporous silica carrier; and amino acids: L-arginine, 
L-tryptophan, and L-phenylalanine for co-amorphous systems. 
This predictive screening enabled the rational selection of the 
most suitable stabiliser within each approach, thereby facilitating 
a robust and systematic comparison across the three 
amorphisation strategies.

Hansen Solubility Parameter Estimation
The Hansen Solubility Parameters (HSP) for cefdinir and all 
excipients were calculated using the group contribution method 
to assess drug–excipient miscibility. To determine the interaction 
radius (Ra) according the following equation, three components 
were evaluated: dispersion (δd), polarity (δp), and hydrogen 
bonding (δh). Ra was calculated according to the following 
equation [31]: 

�����������������������������������������

Ra � 4 δd1
− δd2

􏼐 􏼑
2
+ δp1 − δp2( 􏼁

2
+ δh1

− δh2
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2
􏽲

Smaller Ra values indicate improved miscibility. The results 
informed excipient selection and corroborated observed 
stabilisation trends. It was found that systems with values 
below 7 MPa½ are miscible, whereas those with values above 
10 MPa½ are likely to be immiscible [25].

Flory–Huggins Interaction Parameter Calculation
To further investigate the miscibility between cefdinir and each 
excipient, Flory–Huggins theory was employed for 
thermodynamic predictions of miscibility. This approach, 
based on the difference in solubility parameters and molar 
volume, allowed the calculation of the interaction parameter 
(χ) using the following equation [25]: 

X �
Vm

RT
δdrug − δexcepient( 􏼁

2 

Where Vm is the molar volume of the drug (cm3/mol), R is the 
gas constant (8.314 J/mol·K), T is the absolute temperature 
(298 K), and δ denotes the total solubility parameter of the 
drug and excipient, respectively, expressed in MPa½. The total 
solubility parameters (δt) were calculated from the previously 
determined Hansen components using the following 
relation [31]: 

δt �
�������������

δd2
+ δp2 + δh2

􏽱

The molar volume of cefdinir was estimated using the group 
contribution method. χ values were calculated for PVP K30, 
HPMC 606, Eudragit L100, SBA-15, and the amino acid 
coformers (L-arginine, L-phenylalanine, and L-tryptophan), 
and interpreted according to standard miscibility thresholds, 
where χ < 0.5 indicates good miscibility [25].

Formulation Preparation
Polymeric Amorphous Solid Dispersion (Selected: 
PVP K30-Based)
Amorphous solid dispersions of cefdinir were prepared via spray- 
drying, using PVP K30 as the polymeric carrier at a 1:2 (drug-to- 

polymer) weight ratio. This ratio was selected based on miscibility 
calculations and our previous study, which demonstrated 
enhanced dissolution performance across three biorelevant 
media (pH 1.2, 4.5, and 6.8) [32]. The drug and polymer were 
dissolved in deionised water adjusted to approximately 
pH 7.0 using 1 N sodium hydroxide to ensure complete 
solubilisation of the drug. The solution was then spray-dried 
using a Büchi B-191 Mini Spray Dryer (Germany) under the 
following conditions: inlet temperature 160 °C, outlet 
temperature 83 °C ± 6 °C, aspirator setting 100%, feed rate 
5.3 ± 0.2 mL/min, and airflow rate 600 L/h. The resulting 
amorphous solid dispersions were collected, sealed in amber 
glass vials, and stored in a desiccator until further analysis.

Preparation of Mesoporous Silica-Based System (Solvent 
Immersion Method)
Cefdinir was loaded into mesoporous silica (SBA-15) using the 
solvent immersion method. Based on our previous study, 
solubility screening identified n-hexane as the most effective 
solvent for drug loading, achieving a maximum efficiency of 
37% w:w [33]. Accordingly, a cefdinir solution in n-hexane was 
prepared at a concentration of 30 mg/mL and added to SBA-15 
(25 mg) at a fixed silica-to-solution ratio of 1:1000 (w/v). The 
mixture was stirred continuously for 24 h at room temperature 
(25 °C) to facilitate adsorption of the drug into the mesoporous 
matrix. Following incubation, the loaded silica was separated by 
centrifugation at 8000 rpm for 30 min. The solid was then air- 
dried under ambient conditions for 72 h, followed by oven-drying 
at 60 °C until a constant weight was achieved. The final 
cefdinir–SBA-15 formulation was stored in sealed glass vials 
under dry conditions until further analysis.

Preparation of Co-Amorphous Formulation
Co-amorphous formulations of cefdinir were prepared using two 
amino acid coformers, L-arginine and L-phenylalanine, at a 1:1: 
1 M ratio. The components were dissolved in distilled water to 
produce clear solutions, avoiding the use of organic solvents. The 
resulting aqueous solution was spray-dried using a Büchi B-191 
Mini Spray Dryer (Germany) under the following conditions: 
inlet temperature 160 °C, outlet temperature 83 °C ± 6 °C, 
aspirator setting 100%, feed rate 5.3 ± 0.2 mL/min, and 
airflow rate 600 L/h. The dried powders were collected in 
amber glass vials and stored in a desiccator until further 
evaluation. The detailed composition of the three prepared 
formulations is presented in Table 1.

Drug Content and Yield
The percentage yield of the prepared formulations was 
determined by comparing the final weight of the dried 
product to the total initial weight of the drug and excipients 
used, using the following formula [32]: 

Yield � 􏼒
Actual weight of dried product

Initial total weight of drug + excipient
􏼓 × 100 

Drug content was calculated as follows: a weighed amount of 
each formulation, equivalent to 50 mg of cefdinir, was dissolved 
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in 50 mL of phosphate buffer (pH 7.0), sonicated, filtered through 
a 0.45 µm membrane filter, appropriately diluted, and analysed 
using the pharmacopeial HPLC method. Analysis was carried out 
on an HPLC apparatus (Jasco, Japan) equipped with a Knauer 
C18 column (4.6 × 150 mm, packing L1) and a UV-VIS detector 
(Model UV-970, Jasco, Japan). The mobile phase consisted of 
methanol, tetrahydrofuran, and citric acid monohydrate solution 
(111:28:1000, v/v), adjusted to pH 2.0 ± 0.05 using phosphoric 
acid. The flow rate was set at 1.4 mL/min, with an injection 
volume of 15 μL, and detection was carried out at 254 nm. The 
cefdinir content in each sample was quantified using the 
following equation [34]: 

Drug content %( )

�
Sample peak areaX Standard concentration

Standardpeak areaXNominal conventration
􏼠 􏼡X 100 

Polarised Light Microscopy (PLM)
Polarised light microscopy (PLM) was employed as a preliminary 
method to assess the crystallinity of the prepared formulations. 
Samples were dispersed onto glass slides, and PLM was carried 
out using a polarising microscope (Olympus BX41, USA) 
at ×40 magnification with crossed polarisers. Birefringence was 
interpreted as indicative of residual or recrystallised crystalline 
domains, whereas the absence of birefringence was considered 
evidence of an amorphous structure [35, 36].

Thermal Stability Study
Thermal analysis of the formulations was conducted using a 
differential scanning calorimeter (DSC 131; SETARAM, France) 
to assess thermal behaviour and stability. Approximately 5 mg of 
each sample was weighed and sealed in standard aluminium pans, 
with an empty sealed pan used as a reference. Thermal scans were 
run from 30 °C to 300 °C at a heating rate of 10 °C/min under a 
nitrogen purge (50 mL/min). Although the DSC could 
theoretically be started at lower temperatures, preliminary 
studies and literature precedent indicate that no relevant 
thermal transitions for cefdinir occur below 30 °C. For 
example, in a previous study, thermal scans for other materials 
were conducted from 25 °C without loss of relevant thermal 
events [21]. Thermograms were analysed for melting endotherms 
and glass transition temperature (Tg) events, providing insights 
into the amorphous nature and thermal stability of cefdinir in the 
formulations [37]. Each measurement was performed in triplicate 
to ensure reproducibility.

Powder X-Ray Diffraction (PXRD)
Pure cefdinir and all prepared formulations, including 
drug–excipient mixtures, were characterised using X-ray 
diffraction (XRD) with a Bruker D8 Advance diffractometer 
(West Germany), equipped with a germanium 
monochromator and a copper radiation source filtered 
through nitrogen. The instrument was operated at 50 kV and 
30 mA. Diffraction patterns were recorded over a 2θ range of 
5°–60° to assess the physical state of cefdinir within the 
formulations relative to the pure drug [37].

Dissolution Studies
The dissolution behaviour of cefdinir in the prepared 
formulations was evaluated using USP Apparatus II (paddle 
method) on a PT-DT7 dissolution tester (Pharma Test, 
Germany). Tests were conducted at 50 rpm and 37 °C ± 
0.2 °C, using 900 mL of dissolution medium to simulate 
gastrointestinal conditions: HCl buffer (pH 1.2), acetate buffer 
(pH 4.5), and phosphate buffer (pH 6.8). These three media were 
selected to represent the varying pH environments of the 
human gastrointestinal tract, enabling assessment of pH- 
dependent solubility, dissolution kinetics, and formulation 
performance across physiologically relevant conditions. An 
amount equivalent to 300 mg of cefdinir was used per test. 
Aliquots (5 mL) were withdrawn at predetermined time 
intervals (2, 5, 10, 15, 20, 30, 45, and 60 min), filtered 
through a 0.45 µm syringe filter, and replaced with an equal 
volume of fresh medium to maintain sink conditions. The 
concentration of cefdinir released was determined using 
UV–VIS spectrophotometry (T80, PG Instruments, UK) at 
280 nm, 286 nm, and 287 nm for HCl, acetate, and 
phosphate buffers, respectively. Each dissolution profile 
represents the mean of three replicates, and statistical 
comparisons were made between formulations [34]. 
Although saturated solubility measurements were not 
explicitly performed, the dissolution medium volumes were 
selected to be at least 3–5 times greater than the expected 
maximum solubility of cefdinir, and aliquot replacement was 
used to approximate sink conditions. This approach ensured 
that the formulations remained fully dissolved throughout the 
testing period.

Chemical Stability Studies
Chemical Stability
The chemical stability of cefdinir in the formulations was assessed 
by quantifying drug degradation under accelerated storage 

TABLE 1 | Compositions of the different prepared formulations.

Formulation F1 (polymeric solid dispersion) F2 (mesoporous silica-based system) F3 (co-amorphous system)

Cefdinir 300 mg 300 mg 300 mg
Pvp-K30 600 mg _ _
Na OH 30.35 mg _ _
SBA-15 _ 507.2 mg _
L- arginine _ _ 174.20 mg
L-phenylalanine 165.19 mg
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conditions. Samples collected at 3 and 6 months were analysed for 
cefdinir content using the validated HPLC method 
described earlier.

Physical Stability Study
Aqueous Solutions
The physical stability of amorphous cefdinir was assessed in 
selected formulations under non-sink conditions, designed to 
mimic physiological stress during administration. Samples 
containing 300 mg of cefdinir were suspended in 250 mL of 
distilled water at 37 °C ± 0.5 °C, using USP Apparatus II (paddle 
method) at 50 rpm. Aliquots (5 mL) were withdrawn at specific 
time intervals (2, 5, 10, 15, 20, 30, 45, 60, 120, and 180 min), 
filtered immediately through a 0.45 µm membrane filter, diluted, 
and analysed using a UV–VIS spectrophotometer (T80, PG 
Instruments, UK) at 287 nm. Each sample withdrawal was 
followed by replacement with an equal volume of distilled 
water. The data were interpreted in terms of the tendency of 
amorphous cefdinir to recrystallise during early dissolution in 
aqueous suspension.

Solid State
The physical stability of amorphous cefdinir in the selected 
formulations was further investigated under accelerated 
storage conditions at three environmental settings that 
included 25 °C/0% relative humidity (RH), 40 °C/0% RH, and 
40 °C/75% RH. Zero humidity was maintained using phosphorus 
pentoxide (P2O5) in desiccators placed in ovens, while high 
humidity conditions (75% RH) were achieved using saturated 
sodium chloride (NaCl) solutions in desiccators kept at 40 °C. All 
samples were stored in the dark and analysed at predefined 
intervals: 1 week, 2 weeks, 1 month, 2 months, 3 months, and 
6 months. PXRD was employed to monitor physical changes, 
specifically recrystallisation.

Statistical Analysis
Statistical analyses were performed using SPSS version 
28 software. One-way analysis of variance (ANOVA) followed 
by Tukey’s post hoc test was used to assess differences between 
groups. All experiments were conducted in triplicate. Data are 
presented as mean ± standard deviation (SD), and a 
p-value <0.05 was considered statistically significant.

RESULTS

Hansen Solubility Parameters (HSPs)
Table 2 presents the calculated Hansen Solubility Parameters (δ) 
and Ra values between cefdinir and each excipient. A lower Ra 
indicates stronger molecular affinity. Among the polymers, 
HPMC 606 and PVP K30 exhibited the strongest compatibility 
with cefdinir, while Eudragit L100 showed borderline 
compatibility, as reflected by its relatively higher Ra. SBA-15 
displayed the highest Ra, indicative of poor miscibility, consistent 
with its expected role as a passive matrix rather than an 
interacting carrier. Of the amino acids evaluated, L-tryptophan 
and L-phenylalanine showed Ra values closest to cefdinir, 

suggesting favourable interactions, whereas L-arginine 
exhibited a higher Ra, reflecting less favourable solubility- 
based compatibility (Table 2). The Flory–Huggins interaction 
parameter (χ) values, summarised in Table 3, provide 
complementary insight into the thermodynamic miscibility 
between cefdinir and each excipient. A χ value <0.5 indicates 
thermodynamic compatibility [31]. All polymers displayed χ 
values below this threshold, with HPMC 606 showing the 
lowest χ (0.076), followed by PVP K30 and Eudragit L100, 
confirming favourable miscibility. Similarly, all amino acids 
demonstrated χ < 0.5, indicating good miscibility; notably, 
L-arginine had the lowest χ value (0.260), suggesting the 
strongest predicted thermodynamic compatibility among the 
amino acids tested.

These results collectively indicate that both HSP and 
Flory–Huggins analyses predict strong miscibility of cefdinir 
with selected polymers and certain amino acids, whereas SBA- 
15 is likely to act primarily as a physical carrier rather than a 
solubility-enhancing excipient.

Drug Content and Yield
Table 4 presents the production yield and drug content of the 
selected formulations (F1–F3). All formulations demonstrated 
high drug content with acceptable standard deviations, 
confirming uniform drug incorporation: 97.99% ± 2.75% for 
F1, 98.72% ± 2.92% for F2, and 99.33% ± 3.85% for F3. The 
highest production yield was observed for F3 at 84.47%, 
followed by F2 at 82.04%, while F1 showed the lowest yield 
of 78.56%.

Polarized Light Microscopy (PLM)
PLM was employed as a preliminary screening tool to assess the 
solid-state form of cefdinir within the formulations. Pure 
cefdinir displayed characteristic acicular crystals with strong 
birefringence (Figure 1A). In contrast, the PVP K30-based 
solid dispersion (F1) showed no birefringence (Figure 1B), 
indicating successful amorphisation of the drug. Similarly, the 
co-amorphous formulation (F3) exhibited complete absence of 
birefringence (Figure 1D). Yet, no cefdinir crystals were 
detected in the SBA-15-based formulation (F2) (Figure 1C), 
implying molecular dispersion of the drug within the 
silica matrix.

Thermal Stability via DSC
The DSC thermogram of pure cefdinir (Figure 2) revealed a 
minor endothermic event around 65 °C corresponding to the 
glass transition temperature, followed by a sharp exothermic peak 
near 229.5 °C attributable to decomposition-associated melting. 
These observations align with known thermal behaviour of 
anhydrous cefdinir [38]. In contrast, none of the formulated 
systems (F1–F3) showed this high-temperature exothermic event, 
indicating suppression of thermal degradation through 
amorphisation and matrix stabilisation. While subtle baseline 
deviations were observed in the low-temperature region for the 
formulations, these transitions were broad and poorly defined, 
preventing reliable Tg determination under the applied 
experimental conditions.
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X-Ray Powder Diffraction
The PXRD pattern of pure cefdinir (Figure 3) exhibited sharp, 
intense peaks at 2θ values of 5.85°, 11.7°, 16.1°, 21.15°, 22.25°, 24.4°, 
26.2°, and 28.8°, consistent with previous reports [39]. Conversely, 
the diffraction patterns for F1, F2, and F3 showed complete 
disappearance of sharp Bragg peaks, replaced by broad halos. 
This confirms the transformation of cefdinir into an amorphous 
state in all three formulations.

Dissolution Studies
Dissolution profiles for formulations F1, F2, and F3 were 
evaluated in three media: HCl buffer (pH 1.2), acetate buffer 
(pH 4.5), and phosphate buffer (pH 6.8), as shown in Figures 
4A–C respectively. In HCL, cefdinir showed the lowest release 
(72.72% ± 3.22%) after 60 min, while the release increased for F2 
(92.95 ± 1.93) and F3 (97.81 ± 3.65) with the highest release 
achieved using F1 (99.33 ± 3.05). Yet, when the acetate buffer was 
used, F3 presented the highest release (97.81 ± 7.34) followed by 
93.73% ± 7.1%, 72.99 ± 1.53, and 56.23 ± 6.6, for F1, F2, and pure 
cefdinir, respectively. However, when phosphate buffer was used, 
a similar trend to HCl medium was observed: F1 presented the 

highest release (103.45% ± 1.3%), while F2 and F3 showcased 
similar release results 100.34% ± 1.01% and 100.98 ± 1 for F2 and 
F3, respectively. Statistical analysis using Student’s t-test at each 
time point revealed that all formulations significantly improved 
drug release compared to pure cefdinir, corroborating our earlier 
studies [32, 33]. In both HCl and acetate buffers, formulations 
F1 and F3 outperformed F2, particularly during the initial three 
sampling intervals. However, no significant differences in 
dissolution were observed among the formulations in 
phosphate buffer.

Stability Studies
Physical
Physical stability under non-sink aqueous conditions is presented 
in Figure 5. All formulations showed markedly higher solubility 
than crystalline cefdinir. Formulations F1 and F3 sustained drug 
concentrations at or near saturation throughout the testing 
period, demonstrating effective inhibition of recrystallisation. 
Although F2 initially showed a rapid increase in solubility, this 
was followed by a gradual decline, suggesting less effective 
maintenance of supersaturation.

Solid-state stability was further examined by PXRD after 
storage under various conditions (Figures 6–8). Under dry 
conditions (25 °C/0% RH and 40 °C/0% RH), both F1 and 
F3 remained amorphous with no evidence of recrystallisation. 
However, exposure to elevated humidity (40 °C/75% RH) led to 
partial recrystallisation in F1 and F3 after six and 2 months 
respectively. In contrast, F2 maintained its amorphous form 
throughout 6 months regardless of storage humidity, with 
PXRD patterns showing no crystalline peaks. These findings 
indicate superior physical stability for F2 in comparison to the 
other formulations.

Chemical
Chemical stability profiles over 6 months are illustrated in 
Figure 9. Under dry storage conditions (25 °C/0% RH and 
40 °C/0% RH), all formulations retained more than 95% of 
cefdinir content, with no significant degradation detected. 
However, under accelerated humidity (40 °C/75% RH), 
significant drug degradation occurred (p < 0.05) in F1 and F3, 
with drug contents reduced to 47.39% ± 3.41% and 52.17% ± 6% 
respectively. In contrast, F2 retained 97.04% ± 1.97% of the drug 

TABLE 2 | Results of Hansen solubility parameter calculations.

Material δd (MPa0.5) δp (MPa0.5) δh (MPa0.5) Ra vs. cefdinir (MPa0.5)

Cefdinir 17.29 8.2 11.2
Polymers

PVP-K30 18.5 8.0 12.0 4.11
HPMC-606 17.4 10.2 10.9 3.93
Eudragit L100 17.6 9.5 6.9 5.32

Mesoporous silica
SBA-15 15.2 3.0 8.0 7.92

Amino acids
L- arginine 16.8 14.2 17.5 4.77
L- phenylalanine 18.3 8.4 11.2 3.25
L- tryptophan 17.9 10.5 12.4 2.94

TABLE 3 | The calculated Flory–Huggins interaction parameters (χ) between 
cefdinir and all the studied stabilizing agents.

Cefdinir- excipient pair χ value

Cefdinir–PVP K30 0.098
Cefdinir–HPMC 606 0.076
Cefdinir–Eudragit L100 0.135
SBA-15 NA
L-Arginine 0.260
L-Tryptophan 0.321
L-Phenylalanine 0.297

TABLE 4 | Results of yield and drug content of the selected formulations.

Formulation Yield (%) Drug content (%)

F1 78.56 97.986 ± 2.745
F2 82.04 98.11 ± 1.92
F3 84.473 99.330 ± 3.849
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FIGURE 1 | PLM images for: pure cefdinir (A), F1 (B), F2 (C) and F3 (D).

FIGURE 2 | DSC thermograms of pure cefdinir, F1, F2, and F3 highlighting the exothermic activity.
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with a higher significant amount (p < 0.05), highlighting its 
markedly enhanced chemical stability under humid conditions.

DISCUSSION

The compatibility of cefdinir with polymeric, mesoporous, and 
co-amorphous stabilisers was assessed using the Hansen 
Solubility Parameter (HSP) approach alongside the 
Flory–Huggins interaction parameter (χ) model. These 
theoretical frameworks serve as valuable preformulation tools, 
enabling the prediction of drug–excipient miscibility and guiding 
the selection of stabilisers for amorphous formulations. Based on 
the HSP analysis, low Ra values (<5 MPa½) indicated that PVP 
K30, HPMC 606, and all amino acids studied are highly 
compatible with cefdinir. This observation was further 
supported by Flory–Huggins χ values, which confirmed 
miscibility for all polymer-based systems (χ < 0.14). Among 
the polymers, HPMC 606 exhibited the lowest χ value (0.076), 
highlighting its potential as an effective stabiliser for amorphous 
cefdinir. Despite this, PVP K30 was selected for the polymer- 

based solid dispersion (F1), based on prior studies demonstrating 
its superior dissolution profile across multiple gastrointestinal- 
relevant media [32]. Moreover, the molecular weight-dependent 
solubility characteristics of PVP favour the formation of solid 
solutions, offering practical advantages for formulation 
development and processing [40].

The mesoporous silica SBA-15, in contrast, demonstrated 
poor solubility-based compatibility (high Ra), indicating that 
its primary role in formulations is likely as a physical carrier 
for controlled release rather than as a molecular stabiliser. The 
amino acids, particularly L-tryptophan and L-phenylalanine, are 
predicted to interact favourably with cefdinir, potentially serving 
as co-amorphous stabilisers or crystallisation inhibitors, although 
L-arginine’s high polarity may limit miscibility unless ionic 
interactions are exploited. Collectively, these findings 
underscore the utility of HSP and Flory–Huggins analyses in 
rational excipient selection, providing predictive guidance that 
complements experimental formulation studies. By integrating 
these theoretical models with prior dissolution and processing 
data, the selection of stabilisers such as PVP K30 can be optimised 
for developing stable, amorphous cefdinir formulations.

FIGURE 3 | PXRD of: pure cefdinir, F1 (PVP-K30 based formulation), F2 (SBA-15-based), and F3 (Co-amorphous formulation) directly after preparation.

British Journal of Biomedical Science | Published by Frontiers February 2026 | Volume 83 | Article 15242 8

Al Nuss et al. Amorphous Cefdinir Stabilization Comparison



All three formulations achieved high drug content with 
acceptable standard deviations, confirming effective drug 
incorporation regardless of the stabilisation strategy employed 
(F1: 97.99% ± 2.75%; F2: 98.72% ± 2.92%; F3: 99.33% ± 3.85%). 
This indicates that both spray drying (used for F1 and F3) and 
solvent immersion (used for F2) produced uniform and 
consistent products. Regarding process yield, the co- 
amorphous system (F3) achieved the highest yield at 84.47%, 
likely due to enhanced powder recovery from improved 
flowability and reduced stickiness of amino acid-based 

matrices during spray drying. SBA-15 (F2) demonstrated a 
high yield of 82.04%, confirming the viability of the solvent 
immersion method despite a comparatively low drug loading 
of 37.18%. The PVP K30-based solid dispersion (F1) showed the 
lowest yield at 78.56%, probably owing to product adherence 
within the spray dryer chamber or collection losses commonly 
associated with hydrophilic polymers. Taken together, these 
findings indicate all systems effectively incorporate the drug, 
with F3 offering the best process recovery and F2 providing 
an excellent balance between yield, drug content, and defined 

FIGURE 4 | Drug release studies from pure cefdinir and the selected formulations in: (A) HCl buffer pH 1.2, (B) Acetate buffer pH 4.5, and (C) Phosphate 
buffer pH 6.8.

FIGURE 5 | Results of physical stability in aqueous media.
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loading, making both promising candidates for further 
development. While saturated solubility studies were not 
explicitly conducted, the dissolution media volumes were 
deliberately chosen to exceed the expected maximum solubility 
of cefdinir, and aliquot replacement ensured that drug 
concentrations remained well below saturation throughout 
testing. The complete dissolution of all formulations across the 
testing period indicates that sink conditions were effectively 
maintained, supporting reliable interpretation of dissolution 
kinetics. Although direct solubility measurements could 
provide additional confirmation, the current approach 
provides a robust and practical assessment of formulation 
performance.

Polarised light microscopy (PLM) further confirmed 
successful amorphisation of cefdinir in all three formulations. 
The PVP-based solid dispersion (F1) exhibited no birefringence, 
as expected from typical amorphous solid dispersions [36, 41, 42]. 
Although SBA-15 (F2) is structurally amorphous, it displayed 
birefringence under PLM due to the hexagonally ordered 
mesoporous structure, which can cause anisotropic light 
transmission mimicking birefringence [36, 43, 44]. 
Importantly, no visible cefdinir crystals were detected in the 
F2 images, suggesting effective confinement of the drug in an 

amorphous state within the mesoporous matrix. The co- 
amorphous formulation (F3) showed zero birefringence, 
indicating the formation of a homogeneous amorphous blend 
with the amino acid coformers. These observations align well 
with the theoretical predictions from the Hansen and 
Flory–Huggins models, which suggest strong miscibility 
between cefdinir and both polymeric and amino acid-based 
carriers. Thus, PLM confirmed the successful amorphisation of 
cefdinir across all three systems, supporting their further 
evaluation in stability and dissolution studies.

Thermal analysis by DSC was primarily employed to evaluate 
the thermal behaviour and degradation profile of cefdinir in its 
crystalline form compared with the processed formulations, 
rather than to resolve subtle glass transition events. Pure 
crystalline cefdinir exhibited a sharp exothermic peak at 
approximately 229.5 °C (Figure 2), which is attributed to 
thermal decomposition occurring during melting, likely 
initiated by nucleophilic attack on the β-lactam ring, as 
reported previously for cephalosporins [45]. This degradation- 
associated thermal event reflects the inherent thermal instability 
of crystalline cefdinir. In contrast, none of the formulated systems 
(F1–F3) displayed this exothermic peak across the scanned 
temperature range, indicating suppression of thermally 

FIGURE 6 | Physical stability results at solid state of formula F1.
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induced degradation following formulation. In the PVP K30- 
based solid dispersion (F1), drug–polymer hydrogen bonding 
and reduced molecular mobility are likely responsible for 
inhibiting degradation pathways. For the SBA-15 formulation 
(F2), nanoscale confinement within mesoporous channels 
physically restricts molecular rearrangement and limits 
thermal decomposition. In the co-amorphous system (F3), 
stabilisation is attributed to hydrogen bonding and ionic 
interactions between cefdinir and the amino acid coformers, 
which further reduce molecular mobility during heating. These 
observations are consistent with previous reports demonstrating 
enhanced thermal stability of drugs formulated as polymeric solid 
dispersions, mesoporous silica systems, and co-amorphous 
mixtures [46–51].

Although minor baseline deviations were observed for the 
formulations at lower temperatures, these events were broad and 
poorly resolved and could not be reliably assigned to distinct glass 
transition temperatures (Tg). This behaviour is typical of 
multicomponent amorphous systems, where overlapping 
relaxation processes, compositional heterogeneity, and strong 
drug–excipient interactions often obscure discrete Tg signals, 
particularly under conventional DSC conditions. As such, the 
absence of clearly defined Tg transitions does not contradict the 
amorphous nature of the formulations.

To confirm the solid-state form suggested by DSC, X-ray 
powder diffraction (XRPD) analysis was conducted subsequently 

on pure cefdinir and all processed formulations. XRPD results 
demonstrated the complete absence of characteristic 
crystalline cefdinir diffraction peaks in all formulations 
(Figure 3), confirming successful amorphisation and 
corroborating the DSC findings. Taken together, DSC and 
XRPD provide complementary evidence that formulation 
effectively stabilised cefdinir by eliminating crystalline 
melting and degradation behaviour while maintaining the 
drug in an amorphous state. X-ray powder diffraction 
(PXRD) analysis reinforced these findings, showing the 
absence of sharp diffraction peaks characteristic of 
crystalline cefdinir in all formulations (Figure 3). This 
complements the PLM results and confirms the effective 
conversion of cefdinir into its amorphous form at the time 
of preparation.

The enhanced dissolution profiles observed for all three 
formulations compared to pure cefdinir are primarily 
attributed to amorphisation. The amorphous form possesses 
higher molecular mobility and internal energy, leading to 
increased apparent solubility and faster dissolution rates [16, 
17]. These solid-state changes are crucial in overcoming the poor 
solubility inherent to crystalline cefdinir. Additionally, chemical 
modifications in formulations F1 and F3 further contributed to 
improved dissolution performance: F1 formed a sodium salt that 
increased ionic character at low pH, while F3’s arginine salt 
enhanced solubility via ionisation. Together, these solid-state and 

FIGURE 7 | Physical stability results at solid state of formula F2.
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chemical alterations effectively address cefdinir’s intrinsic 
solubility limitations.

The improved physical stability in aqueous media observed 
for F1 and F3 is likely due to their ability to inhibit 
recrystallisation and maintain cefdinir in solution. PVP 
K30 and amino acids such as arginine and phenylalanine 
increase cefdinir’s solubility and prevent crystallisation 
caused by supersaturation through kinetic stabilisation and 

salt formation [50, 52, 53]. Conversely, SBA-15 (F2) failed to 
maintain amorphous stability in solution, evidenced by a 
decrease in drug concentration after 10 min. This 
instability may arise from rapid drug release causing 
transient supersaturation and subsequent recrystallisation. 
Water penetrating the silica structure might expel the drug, 
leading to precipitation. Hence, while mesoporous silica 
facilitates rapid dissolution, it does not adequately suppress 

FIGURE 8 | Physical stability results at solid state of formula F3.

FIGURE 9 | Chemical stability results after storing at: 25 °C/0%RH (A), 40 °C/0% RH (B), and 40 °C/75%RH (C).
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recrystallisation under non-sink aqueous conditions unless 
combined with nucleation or crystal growth inhibitors.

The solid-state amorphous stability of the formulations was 
influenced by both the stabilising matrix and storage conditions. 
F1 and F3 maintained amorphous stability for extended periods 
under dry conditions, likely due to polymer viscosity and ionic 
interactions restricting molecular mobility [54, 55]. Increases in 
glass transition temperature (Tg) and strong excipient–drug 
interactions outweighed any crystallisation tendencies [18]. 
However, neither formulation resisted recrystallisation at 75% 
relative humidity (RH), probably because moisture absorption by 
hygroscopic PVP K30 and amino acids reduced Tg and induced 
phase separation [56]. In contrast, F2 performed best under both 
dry and humid conditions. The mesoporous structure of SBA-15 
physically limited drug mobility through nanoconfinement and 
possibly formed chemical bonds with silanol groups on the silica 
surface, as the negatively charged silica surface favours forming 
hydrogen bonds with molecules [57–59]. PXRD analysis showed 
no recrystallisation for 6 months, even below 75% RH, 
demonstrating excellent silica-mediated stability.

Chemical stability studies showed all three formulations remained 
stable for 6 months under dry storage, with drug content decreasing 
by less than 5%, meeting ICH guidelines [20]. However, under 
accelerated humid conditions (40 °C/75% RH), F1 and F3 underwent 
significant degradation (P < 0.05), likely due to moisture sorption by 
hygroscopic components (PVP K30 and amino acids), which 
facilitated degradation. In contrast, the SBA-15-based formulation 
(F2) remained highly stable even in humid conditions, presumably 
because drug confinement within silica pores minimised exposure to 
moisture and physical isolation from degradation initiators. This 
aligns with previous reports indicating that silica carriers enhance 
chemical stability by restricting molecular mobility and protecting 
against hydrolysis [60–62] The superior stability of F2 not only 
ensures consistent drug release but also supports its potential for 
targeted oral delivery, as the drug remains protected until it reaches 
the intended site of action. Furtehrmore, mesoporous-based systems 
have been reported for targeting cellular organelles such as the 
mitochondria [63], which gives them an additional benefit for 
targeting applications. Therefore, F2 is the most chemically stable 
formulation, while F1 and F3 require protection from moisture.

CONCLUSION

This study presents a detailed comparison of three amorphisation 
strategies to enhance the dissolution and stability of cefdinir, a poorly 
water-soluble antibiotic: polymer-based solid dispersion (PVP K30), 
mesoporous silica (SBA-15), and co-amorphous formulations with 
L-arginine and L-phenylalanine. Hansen solubility parameters and 
Flory–Huggins interaction theory were used to predict drug–carrier 
compatibility and guide stabiliser selection. Experimental results 
confirmed complete amorphisation in all formulations, with 
polymeric and co-amorphous systems demonstrating superior 
dissolution compared to the mesoporous silica-based formulation. 
Stability studies showed that amorphisation enhanced cefdinir’s 
thermal stability and slowed recrystallisation. However, long-term 
stability testing under revealed clear differences: the mesoporous 

silica system exhibited excellent chemical and physical stability, even 
in humid environments, due to molecular confinement within the 
silica matrix. Conversely, the polymer and co-amorphous 
formulations were less stable under humid conditions, likely due 
to the hygroscopic nature of their stabilisers. These findings highlight 
the importance of choosing formulation strategies according to the 
required stability profile and storage conditions. The enhanced 
stability of the silica-based formulation also supports its potential 
for targeted delivery, ensuring the drug remains protected until 
reaching intended site. The study further reinforces the valuable 
role of theoretical modelling in the rational design of amorphous 
drug formulations.

SUMMARY TABLE

What Is Known About This Subject
• Amorphisation improves drug solubility and dissolution 

but requires careful stabiliser selection.
• Polymeric, mesoporous silica, and co-amorphous systems 

are common approaches to stabilise drugs.
• Theoretical models help predict drug–excipient 

compatibility to optimise formulation design.

What This Paper Adds
• Theoretical modelling effectively guided selection of 

compatible stabilisers, confirmed by experiments.
• All three strategies fully amorphised cefdinir, with polymer 

and co-amorphous systems enhancing dissolution.
• Mesoporous silica offered superior chemical and physical 

stability under humid conditions despite slower release.

CONCLUDING STATEMENT

This work represents an advance in biomedical science by 
demonstrating how rational selection of amorphisation 
strategies, guided by theoretical modelling, can optimise drug 
dissolution and stability, ultimately enhancing formulation 
design for poorly soluble medicines.
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