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Antimicrobial resistance (AMR) has caused a global public health crisis, contributing to
approximately five million deaths in 2019 and predicted deaths of approximately ten million
annually by 2050. This equates to approximately 1.4-fold more deaths annually from AMR
in 2050 than the entire COVID-19 pandemic to date. To tackle this AMR pandemic,
regulatory and policy frameworks have been prepared at local, national and international
levels with multi-faceted proposals and advances encompassing surveillance, diagnostics,
infection prevention, antibiotic prescribing and variation of existing and novel treatment
approaches. This narrative review primarily focuses on research and development which
have been documented over the last five years in relation to therapeutic approaches at
various stages in clinical development and the potential role that vaccines can play in the
fight against AMR. This review provides an overview on antibacterial drugs, including novel
classes of antibiotics, which have been recently approved, as well as combination
antibiotic therapy and the potential of repurposed drugs. The potential role of novel
antimicrobial, antibiofilm and quorum sensing inhibitors, such as antimicrobial peptides,
nanomaterials and compounds from the extreme and natural environments, as well as
ethnopharmacology including the antimicrobial effects of plants, spices, honey and
venoms are explored. Novel therapeutic approaches are critically discussed in terms of
their realistic clinical potential, detailing recent and ongoing trials to highlight the current
interest of these approaches, including immunotherapy, bacteriophage therapy,
antimicrobial photodynamic therapy (aPDT), antimicrobial sonodynamic therapy (@SDT),
nitric oxide therapy and microbiome manipulation including faecal microbiota
transplantation (FMT). The potential of predatory bacteria as living antimicrobial agents
is also discussed. Importantly, there have been many technological developments which
have enhanced bioprospecting and research and development of novel antimicrobials
which this review draws attention to, including artificial intelligence, machine learning and
Organ-on-a-Chip devices. Finally, key messages from the recent World Health
Organization report into the role of vaccines against AMR provides an interesting
perspective relating to prevention which can be of significance in tackling the AMR burden.

Keywords: antimicrobial resistance (AMR), antibiotic resistance, antibiotic, innovation, new approaches,
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INTRODUCTION

Antimicrobial resistance (AMR) is a global concern which
continues to have an impact on public health both within
healthcare and increasingly community settings, in relation to
mortality and non-fatal health burden, as well as problems
associated with treatability and additionally financial costs
[1-3]. In 2016, the O’Neill report detailed that there were
8.2 million deaths attributed to cancer and predicted that in
2050, 10 million deaths would be attributed to AMR [1]. Due to
this public health crisis, various global and national strategies
have been devised and actioned to help tackle AMR using a
multidisciplinary “One Health approach”. This framework
considers the contributions to this problem attributed to
human, animal and environmental factors and effective steps,
which can be taken to control and limit the expansion of
this problem [4].

The consequences of AMR have impacted the clinical
management of infections causing the World Health
Organization (WHO) to update their “Bacterial Priority
Pathogens List” (BPPL) in May 2024, seven years since their
previous BPPL, during which time the pandemic of AMR has
continued to lead to a global crisis particularly, but not limited to,
low and middle income countries (LMIC), with some Gram-
negative organisms now resistant to last-resort antibiotics [3].
The most recent BPPL lists one bacterial order, 11 named
bacterial species and two Lancefield groupings of streptococci
which are antimicrobial resistant and have been assigned to three
priority groups, namely critical, high and medium, which are of
global public health concern within vulnerable populations and
LMIGC, as well as organisms which are highly virulent, multidrug-
resistant (MDR) and those with the ability to transfer resistance
genes, including “transmission across the One Health spectrum”,
see Figure 1 [3].

The recent BPPL highlights the severity of AMR as evidenced
with the inclusion of organisms which are MDR. Drug resistant
tuberculosis (DR-TB) is a primary example of an infection which
continues to cause concern, particularly as treatment regimens
are dependent on the causes and complex mechanisms of
resistance attributed to the Mpycobacterium tuberculosis
complex [5], with various classifications of resistance being
reported such as Multidrug resistant-TB (MDR-TB),
Multidrug resistant or rifampicin resistant (MDR/RR-TB) and
extensively drug resistant-TB (XDR-TB) which the WHO more
recently clarified in terms of definitions of Pre-XDR-TB and
XDR-TB to align with treatment regimens and epidemiological
reporting [6]. Another pathogen which is of global concern is
Neisseria gonorrhoeae, where resistance has been increasingly
reported in relation to antibiotic empirical therapy such as
ceftriaxone and more recently azithromycin [7].

Although there are fifteen families of bacterial pathogens
highlighted in the recent BPPL which are deemed a priority,
there are groups of individuals where there is a stark reality of
AMR. One such example where AMR is of major concern, is
individuals with cystic fibrosis (CF), where the repeated
administration and prolonged duration of antibiotic therapy,
coupled with environmental conditions in the airways, such as
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altered electrolyte levels, thick mucus and an acidic environment
has promoted bacterial pathogens, such as Pseudomonas
aeruginosa, to establish itself in a biofilm rather than
planktonic state, further contributing to the development of
AMR, particularly when such bacteria are difficult to eradicate
[8]. AMR continues to have a growing significant impact in
patients with cancer, where infection is common and results in
the second cause of death in this patient group. The burden of
AMR is of concern in these patients due to implications for them,
such as increased hospital admissions and deaths, as well as
associated healthcare costs [9].

The primary aims of the BPPL are multi-fold, including a
focus on research and development into the development of
diagnostics and novel treatments, financial input, the
development of AMR policies and programmes to promote
active approaches to tackling AMR, the monitoring of
resistance trends, as well as embedding affordable preventative
and control measures.

Due to the real-world difficulties in treating infections due
to bacteria with multi-faceted resistance mechanisms, the aim
of this narrative review is to provide an overview of research
and clinical trials which have been or continue to be conducted,
primarily during the last five years in relation to searching for
and developing novel therapeutic approaches to target AMR
infections. The aim of this article is to provide an overview of
the wealth of approaches, i.e. the answers (Figure 2) which are
currently being developed to tackle the therapeutic dilemma
considering the AMR global crisis and to direct readers to
seminal recent articles relating to each of these approaches to
further enhance their understanding and appreciation of recent
research and development.

NOVEL ANTIBACTERIAL DRUGS & DRUG
REPURPOSING

Antibiotics commonly act at one or more of the various
bacterial cellular sites such as those involved in the
synthesis of cell walls, protein synthesis, nucleic acid
synthesis, metabolic pathways and cell membrane function,
and in the case of broad-spectrum antibiotics acting at cellular
sites which are common to both Gram-negative and Gram-
positive bacteria [10]. Key to the research and development of
novel therapeutic approaches to the treatment of antibiotic-
resistant bacteria is an understanding of the various cellular
mechanisms of resistance, as well as the virulence factors
attributed to such organisms, as the relationship between
these, including the genetic regulation of these two
components is intertwined [11].

As highlighted in the O'Neill review, research and
development into novel antibiotics is challenging, primarily
due to associated developmental costs and predicted lack of
revenue from subsequent sales. This review stated that “The
total market for antibiotics is relatively large: about 40 billion
USD of sales a year, but with only about 4.7 billion USD of this
total from sales of patented antibiotics”. Hence, coupled with the
potential for the subsequent development of AMR, without
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ABR bacterial pathogens that pose the highest threat to public health due to limited treatment options, high disease burden
(mortality and morbidity) and increasing trends in ABR, with few or no promising candidates in the pipeline. Infections with
SUEEEEEY  pathogens in the critical category may also be uniquely difficult to prevent and are highly transmissible; the pathogens may
have global mechanisms of resistance and/or MDR strains in certain populations or geographical areas.

ABR bacterial pathogens that are significantly difficult to treat, cause a substantial disease burden (mortality and morbidity),
show increasing trends in resistance, are uniquely difficult to prevent, are highly transmissible and for which there are few
potential treatments in the development pipeline. Although they may not be critical globally, pathogens in this category could
be critical for some populations and in specific geographical areas.

ABR bacterial pathogens that are associated with moderate difficulty for treatment, a moderate disease burden (mortality and
morbidity) and moderate trends in resistance, with unique issues for preventability or transmissibility and relatively more
WEEITLRETT)  candidates for treatment in the pipeline. Similarly, while they may not be critical globally, pathogens in this category could be
critical for some populations and in specific geographical areas.

FIGURE 1| The World Health Organization (WHO) bacterial priority pathogens list, 2024. (Top) reproduced from “WHO Bacterial Priority Pathogens List, 2024” by
World Health Organization (https://www.who.int/) licensed under, CC BY-NC-SA 3.0 IGO.
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FIGURE 2 | Approaches which are currently being developed to tackle the therapeutic dilemma due to antibiotic resistance. aPDT, antimicrobial photodynamic

incentives, the pharmaceutical industry is reluctant to invest in
this market [1].

Recently Approved Antibiotics

Two recent seminal articles provide a comprehensive overview of
the antibacterial drugs which have been approved by the
United States Food and Drug Administration (US FDA) and
the European Medicines Agency (EMA) during the period 2012-
2022 [12, 13] and it has been reported that only twenty
antibiotics, seven P-lactam/p-lactamase inhibitor combinations
and four non-traditional antibacterial drugs have been launched
worldwide during the last 10 years [14]. A recent evaluation of
antibacterial drugs, particularly targeting those on the WHO
priority list, which have been recently approved by the FDA and
EMA, as well as those currently in the clinical trials pipeline,
highlights that the majority of drugs are derivatives of currently
available antibiotic classes and as such may succumb to similar
resistance mechanisms which have been historically
observed [15].

It is interesting to note two recent deemed “First-in- class”
antibiotics approved, namely lefamulin and gepotidacin.
Lefamulin (Xenleta™), is a semi-synthetic pleuromutilin and
its mechanism of action is the blocking of bacterial ribosomal
protein synthesis by means of interfering with the bacterial 50S
RNA subunit [16]. Lefamulin was approved by the FDA (August
2019) and EMA (July 2020) followed by the Medicines and
Healthcare products Regulatory Agency (MHRA), granting
market authorisation in the UK in January 2021 for the
treatment of community-acquired bacterial pneumonia. Until
2019, employment of pleuromutilins, was limited in human
medicine to the topical treatment of impetigo and
staphylococcal skin infections with retapamulin. However,
market authorisation for retapamulin was withdrawn by the

EMA at the request of the marketing authorisation holder,
leaving the new antibiotic, lefamulin, as the sole agent within
this class of antibiotic with a licence and indication in human
medicine. The licensing of this pleuromutilin in human medicine
creates a new dynamic, where the historical backdrop of
pleuromutilins were exclusively a class of antibiotics used
solely in veterinary medicine, with tiamulin and valnemulin,
as licenced in the UK, for the treatment of swine dysentary
caused by Brachyspira hyodysenteriae, complicated by the
anaerobes, Fusobacterium and Bacteroides, as well as the
atypicals, including Mycoplasma infections. Also, this class of
antibiotic is typically used against Mycoplasma spp. and avian
intestinal spirochetosis caused by Brachyspira in poultry [17]. The
arrival of lefamulin in human medicine potentially creates a new
route of transmission of pleuromutilin- resistance organisms
developing in  human  medicine and  spreading
zooanthropogenically (reverse zoonosis) to livestock. As with
other classes of antibiotics, cross-resistance may occur between
other members of the pleuromutilin class and lefamulin [18].
Zooanthropogenic spread of bacterial pathogens has been
documented, particularly with livestock and companion
animals and methicillin-resistant ~ Staphylococcus — aureus
(MRSA) [19], with the potential to compromise the antibiotic
efficacy of important classes of veterinary lincosamides,
phenicols, streptogramins, as well as the veterinary
pleuromutilins. The equilibrium of potential pathogen
transmission involving the ebb and flow effect of zoonosis and
anthroponosis coupled with AMR, creates a new dynamic for
further investigation under the One Health initiative. This
changing topography on the licensing of antibiotics for
humans requires careful epidemiological monitoring of
antibiotic susceptibility in both human and veterinary
medicine, coupled with robust antimicrobial stewardship to
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ensure longevity of effectiveness with the pleuromutilins against
AMR for both our human and animal patients.

Gepotidacin, was approved by the FDA on 25 March 2025 for
the treatment of female and adolescent uncomplicated urinary
tract infections. This antibiotic is a first in the class of
triazaacenaphthylene antibiotics whose mechanism of action is
inhibition of bacterial DNA replication by inhibiting the bacterial
topisomerase enzymes, namely the B subunit of DNA gyrase
(topoisomerase II), as well as topoisomerase IV [20]. This novel
antibiotic has a number of properties of interest such as the
availability of an oral medication, potential therapeutic use in the
treatment of other infections due to its broad activity against
Gram-negative and Gram-positive organisms, including
urogenital gonorrhoea, as observed in a recent clinical trial
[21] and the fact that multiple mutations would be required in
both enzymes to result in the development of resistance [20].

FDA Legislation to Promote the

Development of Novel Antibiotics
In July 2012, The FDA Safety and Innovation Act (FDASIA)
became a regulatory legislation [22, 23]. One important aspect of
this legislation was that the FDA could facilitate and expedite the
development and review of new drugs. Title VIII within the
FDASIA refers to “Generating Antibiotic Incentives Now
(GAIN)”. The primary aim of GAIN is to offer incentives to
promote the development of certain antimicrobial drugs which
can result in attainable concentrations in humans to either inhibit
or kill fungal and bacterial infections such as those caused by
antimicrobial-resistant organisms or emerging pathogens known
to cause serious or life-threatening infections [24]. A drug which
qualifies for a qualified infectious disease product (QIDP), will be
granted two incentive policies: an additional 5 years of market
exclusivity and a priority review during the review phase.
Following approval in June 2021 by The National Medical
Products Administration, China [25], the FDA recently,
September 2023, granted the pharmaceutical company
MicuRX, a QIDP as well as fast track designation in relation
to their oxazolidinone antimicrobial drugs contezolid (oral), and
contezolid acefosamil (prodrug, intravenous) for the treatment of
Gram-positive infections in severe diabetic foot infection without
concomitant osteomyelitis [26]. Research is active in the potential
use of contezolid in the treatment of several infections including
tuberculosis due to its efficacy and safety profile [27], the
treatment of methicillin-sensitive S. aureus infective
endocarditis with cerebrovascular complications [28] and lung
abscess due to S. aureus [29]. Interestingly, contezolid has been
successful in the treatment of antibiotic-resistant infections such
as skin infections due to MDR Mycobacterium abscesses complex
bacteria [30], vancomycin-resistant Enterococcus faecium
pneumonia [31], MRSA catheter-related bloodstream infection
[32], with further in vitro research ongoing in relation to
antibiotic-resistant organisms including M. tuberculosis [33-37].

Combination Drugs
One key area where novel antibiotics have been developed relates
to those with the potential to treat antibiotic-resistant Gram-
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negative organisms [38]. Development of combination drugs has
been evident in an attempt to treat difficult and antibiotic-
resistant  bacteria. Novel p-lactam and B-lactamase
combination antibiotics have been an area of recent
development and subsequent approval [39].

EMBLAVEO® (Pfizer, AbbVie) is the most recent FDA
approved (07 February 2025) and EMA approved
combination antibiotic for marketing authorization
(22 April 2024). This combination antibiotic consists of the
monobactam P-lactam aztreonam and avibactam which is a
broad-spectrum P-lactamase inhibitor. This combination has
been approved 39 years since the approval of aztreonam.
EMBLAVEO® is effective against Gram-negative organisms
such as Escherichia coli, Klebsiella pneumoniae, Klebsiella
oxytoca, Enterobacter cloacae complex, Citrobacter freundii
complex, and Serratia marcescens and is licensed to treat adult
patients with complicated of intra-abdomenal infections,
hospital-acquired pneumonia, ventilator-associated
pneumonia, urinary tract including pyelonephritis, and
aerobic Gram-negative infections which have limited
treatment options particularly due to MDR [40]. Another
recent antibiotic combination drug is sulbactam-durlobactam
(XACDURO®) which is a f-lactam (sulbactam)/p-lactamase
inhibitor combination (durlobactam) which was approved in
May 2023 for the treatment of infections caused by
Acinetobacter  baumannii-calcoaceticus  complex  [41].
Cefepime/enmetazobactam (EXBLIFEP®; Advanz Pharma
& Allectra Therapeutics) is an example of a novel
antibiotic which received accelerated assessment via the
MHRA International Recognition Procedure (IRP),
resulting in approval within 55 days, on 4 April 2024, for
the treatment of severe urinary tract infection and hospital-
acquired pneumonia [42] and has potent antibacterial activity
against  Extended-Spectrum  Beta-Lactamase  (ESBL)
Enterobacterales [43].

Several other combination antibiotic drugs developed
approved over the last 10 years with a therapeutic indication
for Gram-negative infections including imipenem/cilastatin/
relebactam (RECARBRIO®; Merck Sharp & Dohme) [44],
meropenem/vaborbactam  (Vaborem®; ~ Menarini)  [45],
ceftazidime/avibactam (Avycaz®; AbbVie) and ceftolozane and
tazobactam (ZERBAXA®; Merck Sharp & Dohme) [46], the
mechanism of action all of which relate to interference with
the synthesis of the bacterial cell wall.

The scientific community continues to research combination
antibiotics against antibiotic-resistant organisms such as K.
pneumoniae [47]. Additionally, synergy testing of various
multiple target antibiotic combinations offers guidance to
clinicians when treating antibiotic-resistant organisms [48].

Drug Repurposing

Drug repurposing has extensive potential to accelerate the
development of de novo antibiotic therapies and reduce the
expense and failure rate for the application of such drugs
against MDR bacterial infections, because safety and efficacy
data already exist for other therapeutic applications [49].
Various approaches have been used to evaluate the potential
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TABLE 1 | A selection of non-antibacterial drug repurposing studies, evidencing a direct antibacterial or synergistic or restoration effect in the presence of conventional

antibiotics.
Class drug

Antidiabetic
Metformin [55]
Anticancer
VLX600 [56]

Antidepressant
Paroxetine [57]
Fluoxetine [57]
Antifungal
Ciclopirox [58]
Antihelminthic
Albendazole [59]
Antihistamine
Ebastine [60]

Fexofenadine [61]
Levocetrizine [61]
Astemizole [62]

Antipsychotic
Chlorpromazine [52]

Penfluridol [63]

Antiviral
Ribavirin [58]
Beta blocker
Propranolol [52]

Calcium channel blocker

Fendiline [64]

Amlodipine [53]
Diuretic
Furosemide [58]
Immunomodulator
Fingolimod [65]

Nonsteroidal anti-
inflammatory
Aspirin [66]
lbuprofen [67]
Diclofenac [68]
Aceclofenac [61]

Statin
Atorvastatin [61]

Thrombopoietin receptor

agonist
Eltrombopag [69, 70]

Veterinary anti-parasitic

Nicolaides [71]

Ivermectin [61]

Action

Quorum quenching, decrease in motility

Iron chelator

Inhibition of biofim formation, synergy with levofloxacin

Antibacterial and antibiofilm activity

Inhibition of quorum sensing, anti-virulence, anti-biofilm properties

Bactericidal, antibiofilm, disruption of bacterial membrane/ increasing membrane
permeability

Anti-quorum sensing, antivirulence potential

Disrupted bacterial membrane integrity, inhibited ATP synthesis, induced ROS
accumulation

Restoration of susceptibility to ciprofloxacin and levofloxacin

Bactericidal activity, efflux pump inhibitor

Limited antibacterial activity alone, synergy with colistin. Enhanced outer/inner
membrane permeability, inhibition and biofilm eradication

Antibiofilm activity

Restoration of susceptibility to ciprofloxacin and levofloxacin

Inhibition of essential lipoprotein trafficking pathways

Reduction in biofim formation

Anti-biofim activity

Bactericidal, inhibition of biofilm formation, disruption of cell permeability/integrity

Synergistic bactericidal activity with colistin

Aspirin-colistin disrupted cell membrane

Effects intracellular K* flux and leakage resulting in destabilisation of cytoplasmic
membrane

Increases oxidative stress and decreases type IV pili when used with colistin resulting
in sensitization of resistant strains to colistin

Anti-quorum sensing, antivirulence potential

Anti-quorum sensing, antivirulence potential, interference with proton-motive force

Bacteriostatic, antibiofilm, anti-persister effects

Impact bacterial catabolic pathways resulting in reduction of ATP thereby inhibiting
bacterial division/growth. Inhibition of a-haemolysin secretion by S. aureus

Anti-quorum sensing, antivirulence potential

Bacteria

P. aeruginosa

Mycobacterium abscessus,
E. coli, S. aureus, P. aeruginosa

MDR P. aeruginosa

P. aeruginosa
P. aeruginosa
S. aureus, MRSA
P. aeruginosa

MRSA

PDR and MDR A. baumannii

Colistin-resistant E. coli,
K. pneumoniae,

A. baumannii, P. aeruginosa

P. aeruginosa

PDR and MDR A. baumannii

Carbapenemase expressing

A. baumannii
P. aeruginosa

P. aeruginosa

S. aureus, MRSA,
E. faecalis, S. agalactiae
MDR P. aeruginosa

S. aureus

PDR and MDR A. baumannii

P. aeruginosa

P. aeruginosa

S. epidermidis, MRSA

Gram-positive bacteria MRSA, E. faecalis, VRE,

S. agalactiae, S. suis,
S. pneumoniae
P. aeruginosa

MDR, multi-drug resistant; MRSA, methicillin-resistant Staphylococcus aureus PDR, pan-drug resistant; VRE, vancomycin-resistant enterococci.
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antimicrobial repurposed drugs, including virtual screening and
computational methods [50]. Recently a high throughput
screening method which utilised a spectrophotometric
approach prior to primary in vitro screening, for growth
inhibition and anti-biofilm activity, was used by Pompilio and
colleagues in the search for drugs with potential antimicrobial
and antibiofilm properties against a MRSA strain from a patient
with CF [51]. From this study, it was interesting to note that
several antibacterial and antibiofilm compounds conventionally
used as diuretic, anti-cancer, anti-asthmatic, anti-histaminic and
non-steroidal anti-inflammatory drugs, were identified which
warrant further investigation.

Repurposing research has primarily focused on MDR
organisms and extended drug-resistant organisms such as A.
baumannii [52], P. aeruginosa [53], M. tuberculosis and the
non-tuberculous mycobacteria, such as M. abscessus [54]. A
selection of such studies is detailed in Table 1. For a
comprehensive appreciation, please see a recent review on
the subject area [49]. In general, although research has
indicated the potential of many of these proposed
repurposed drugs, further research and clinical trials are
warranted before such use becomes a reality.

NOVEL ANTIMICROBIALS IN RESEARCH
AND DEVELOPMENT

Antimicrobial Peptides and a Novel

Macrocyclic Peptide

Antimicrobial peptides (AMPs), are natural components
involved in the innate defence response against pathogenic
organisms and are found in plants, animals, amphibians,
insects, humans and microorganisms [72]. AMPs have
received much attention due to their direct antimicrobial
properties as well as their potential modulation of both the
innate and adaptive immune responses and regulation of
inflammatory processes [73].

AMPs, have broad specificity and are comprised of
5-100 amino acids, typically 50, with a molecular mass of
2-7 kDa [74, 75]. The primary mode of antimicrobial action
of these positively charged peptides, is due to their Arginine (Arg)
and Lysine (Lys) amino acid residues, which allow for the
selection of negatively charged microbial membranes and
subsequent disruption of these membranes by means of
hydrophobic or electrostatic interactions resulting in cell lysis
[74, 75]. Additionally, AMPs may inhibit protein or nucleic acid
synthesis, protease activity and bacterial cell division [75].
Duarte-Mata & Salinas-Carmona recently discussed the
potential of AMPs for the treatment of intracellular bacteria
such as Mycobacterium tuberculosis due to the ability of AMPs
to kill such organisms by means of internalisation, penetration
and the induction of peptides by infected cells and bacterial
clearance by means of AMP immunomodulation [73]. This
would be a novel focus of research as to date studies and
clinical trials have focused on extracellular bacteria.

It has recently been reported that although over
3,000 AMPs have been discovered only seven (gramicidin
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D, daptomycin, vancomycin, oritavancin, dalbavancin,
telavancin and colistin), all of which have originated from
soil bacteria, have been approved to date by the FDA [76].
The concerns and limitations of AMPs as a potential therapy
must be acknowledged, which may have contributed to their
lack of approval. Adverse effects have included kidney injury
as well as toxicity namely due to cytotoxic and haemolytic
effects. Additionally, historically some AMPs have shown
undesirable characteristics with respect to solubility and
stability and poor efficacy or non-superiority in
comparison to conventional antibiotic therapy [73, 75],
which may be in part due to their degradation with blood
proteases or by the binding with other proteins. As such
consideration must be given to the mechanism of
administration [73].

An interesting, novel class of antibiotic with narrow spectrum
is a macrocyclic peptide targeting A. baumannii, is zosurabalpin
which is due to enter Phase 3 clinical trials in late 2025/early
2026 [77]. Zosurabalpin, has been identified and optimised as a
result of initial in vitro studies to elucidate its antibacterial and
pharmacokinetic properties and subsequent in vivo animal
studies. The mechanism of action of this novel class of
antibiotic is blocking the transport of lipopolysaccharide from
the inner membrane of A. baumannii to its destination on the
bacteria’s outer membrane. [78]. This is of significance as
zosurabalpin should not be affected by current known
resistance mechanisms.

Antibiofilm Approaches & Inhibition of

Quorum Sensing

The ability of communities of bacteria to form biofilms is
problematic for many disease states and infections, e.g.,
infective endocarditis, lung infections in CF and infections
associated with medical devices and implants. The biofilm
matrix and intracellular signalling mechanisms, such as
quorum sensing, between polymicrobial communities to
control biofilm formation, and polymicrobial competition
are important aspects to consider in relation to AMR. The
composition of the biofilm such as the matrix and in
particular the protective extracellular polymeric substances
(EPS), coupled with metabolic dormancy of pathogens
contained within the biofilm, is conducive to protection
and intrinsic  tolerance to  antimicrobial agents.
Polymicrobial communities within a biofilm may also
contribute to the development and spread of AMR via
horizontal gene transfer (HGT), as well as modulating
antibiotic efficacy [79]. As knowledge continues to increase
in relation to biofilm formation including at a genetic level
and via quorum sensing, various groups have investigated
novel anti-infective substances natural and synthetic as well as
re-purposed drugs (see Table 1), with respect to antibiofilm
activity and inhibition of the quorum sensing and associated
modulation of virulence pathways, which do not require the
eradication of bacteria [80]. Focus has been primarily
associated with WHO priority pathogens including P.
aeruginosa [80] and MDR A. baumannii [81].
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Antibacterial Oligonucleotides
Antibacterial oligonucleotides are synthesised nucleic acid

sequences designed to exert an inhibitory effect on bacteria by
binding to intracellular RNA sequences through complementary
base pairing [82]. This technology is based on regulatory gene
silencing via antisense RNA which occurs naturally in both
prokaryotic and eukaryotic systems. To induce an
antimicrobial effect of these oligomers is a result of two
mechanisms, namely, by the inhibition of microbial growth by
targeting essential gene products [83, 84], or by the inhibition of
AMR, by targeting resistance gene products and sensitising
pathogens to traditional antibiotics [85-87]. Both applications
are viable for combating AMR, the first by providing a new class
of antimicrobials, and the second by inhibiting the expression of
AMR phenotypes in vivo. The antimicrobial efficacy of these
molecules is dependent on three key molecular properties; their
resistance to degradation, their rate of bacterial cell penetration
and their affinity for intracellular target RNAs. Much research in
this field  has focused  on  Peptide-conjugated
Phosphorodiamidate Morpholino Oligomers (PPMOs) because
they have a modified backbone consisting of linked morpholine
rings that render them resistant to degradation by nucleases and
the oligomer portion specifically binds to mRNA [88].
Membrane-penetrating peptides are conjugated to these
oligonucleotides and generally consist of repeating sequence
motifs of cationic and nonpolar amino acid residues, which
facilitate bacterial uptake, particularly in the case of the
membranes of Gram-negative bacteria [88]. PPMOs have been
demonstrated to target highly conserved and essential genes such
as those coding for acetyl carrier protein (acpP), which functions
in lipid biosynthesis, and have been found to be highly effective
for reducing bacterial load in mouse models of infection for a
range of pathogens including E. coli, K. pneumoniae, A.
baumannii and P. aeruginosa [83, 84]. Other gene targets
include rps] coding for 30S ribosomal protein S10 whose
function is to bind tRNA to the ribosomes and IpxC coding
for the UDP-(3-O-acyl)-N-acetylglucosamine deacetylase which
is involved in lipid A (endotoxin) biosynthesis [88, 89].
Bactericidal PPMOs have also demonstrated anti-biofilm
activity both in vitro and in vivo [83, 84, 88]. In animal models
of disease, essential gene targeted PPMOs have not only been
shown to inhibit the establishment of biofilm, most likely
through growth inhibition of planktonic pathogens, but have
also been associated with reduction in mass of previously
established biofilm. These findings suggest that despite their
large molecular weight, PPMOs can penetrate and act upon
biofilms in ways that traditional antibiotics cannot. For AMR-
targeted PPMOs, studies have shown effective silencing of
transmissible carbapenem resistance genes in
Enterobacteriaceae, allowing restoration of antimicrobial
susceptibility both in vitro and in vivo [86]. Similar
findings of restoring susceptibility to B-lactam antibiotics
have been noted for mecA mRNA targeted oligonucleotides
[85]. mRNA targeting of highly expressed bacterial efflux
pumps associated with broad spectrum resistance to
fluoroquinolones, tetracyclines, macrolides and p-lactams
has also resulted in increased efficacy by reducing
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minimum inhibitory concentrations for these therapies
in vivo [87].

To date, PPMOs as antimicrobials have not yet progressed
beyond research stages and there are some limitations for
antimicrobial applications of this technology that need to be
addressed before progression into clinical practice. At present,
high concentrations of these high molecular weight molecules are
required for effective mRNA silencing in vivo, and the potential
toxic effect of producing high concentrations of PPMOs
systemically needs to be investigated more thoroughly.
Another limitation, particularly with reference to resistance
gene silencing, lies in the need to determine which AMR
phenotype a pathogen is expressing prior to targeted therapy
and having to stagger therapy because antibiotic administration
prior to achieving an AMR gene silencing effect would be
ineffective.

Nanomaterials

Nanomaterials commonly have at least one dimension or a basic
unit in the three-dimensional space in the 1-100 nm range [90].
Nanotechnologies which utilise such nanoparticles (NP) offer
several advantages due to their size including improved drug
bioavailability due to an increased area of contact between the
compound and the bacteria enhancing absorption and
adsorption capabilities, and allowing for controlled release and
stability [91].

Some NPs which possess hollow structures called nanocages
or nanocapsules are designed to contain a drug to deliver and
release, and can be made of different materials such as lipids,
proteins, polymers, ceramics, silica or metals. It is also possible to
use NPs made of materials that already possess antimicrobial
activity such as metals, oxides, metal halides or bimetallic
materials e.g. ZnO NPs, AgNPs which have demonstrated
antibacterial properties against WHO priority pathogens [90].

NPs exert their antimicrobial effects via four main
mechanisms; (i) the production of reactive oxygen species
(ROS) in the case of metal oxide NPs, which promote
peroxidation and damage of the components of the bacterial
cell such as polyunsaturated phospholipids in the cell membrane,
protein deactivation, enzyme disruption and DNA damage which
results in cell death; (ii) physical damage to the cell wall
membranes as a result of sharp edges of the nanomaterial; (iii)
binding materials on the bacterial cell wall resulting in a loss of
the integrity of bacterial cell membranes and the efflux of
cytoplasmic substances and (iv) the direct effect of released
metal ions which can inhibit ATP production and DNA
replication [92, 93].

Surface-functionalised nanocarriers/NPs have been developed
with various other functional compounds such as, antimicrobial
and antibiofilm compounds such as antibiotics, AMPs, protein,
chitosan, ligands, small biomolecules, antibodies and DNA [91]
which have shown high antimicrobial activity and synergistic
effects against antibiotic resistant bacteria [94] particularly when
photodynamic NPs are used [95].

The most frequently studied NPs are silver nanoparticles,
AgNPs, which release Ag+ ions and which have a high
antimicrobial activity targeting biofilms, the bacterial cell wall
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and cell membrane, electron transport, signal transduction and
generating ROS which target DNA and proteins [96]. Due to
these antimicrobial properties, such NPs can be adopted for anti-
biofilm coating in the production of surgical implants e.g., in
orthopaedics [97] or in the preparation of antimicrobial wound
dressings which also promote healing [98]. Kalantari and
colleagues highlight some concerns in relation to (i) toxic
effects of Ag-NPs in terms of both environmental organisms
and human health and (ii) the development of bacteria
developing reduced susceptibility/resistance to Ag-NPs [98].

Further research is required to address the challenges relating
to production of metal NPs such as Ag-NP in a safe,
environmentally friendly and cost-effective manner, in
addition to addressing the varied reports relating cytotoxic
and genotoxic effects of some metal-NPs such as Ag-NP,
TiO,-NP [99].

NATURAL SOURCES OF NOVEL
ANTIBIOTICS FROM THE ENVIRONMENT

Soil

The soil is a rich source of bacteria and fungi which produce
antibacterial and antifungal compounds and historically
researchers have searched the soil microbiota in the goal to
find such compounds, particularly those which have an
antibacterial action to help in the drive against AMR [100].
One limitation, however, has been that not all such
environmental organisms are culturable by routine culture
media and incubation conditions. In order to address this
limitation, iChip technology was developed, whereby
environmental samples containing micro-organisms were
placed in micro-chambers and subsequently placed into their
natural environment for incubation [101]. Using such technology
lead to the discovery of an uncultured bacterium and novel
antibiotic, teixobactin [102]. Teixobactin, is a new class of
antibiotic which has a dual action, namely inhibition of cell
wall synthesis by binding to a highly conserved motif of lipid
II (precursor of peptidoglycan), thereby inhibiting peptidoglycan
synthesis as well as disruption of the cytoplasmic membrane
[102]. Much interest and research has been conducted on this
antibiotic as it only damages membranes which contain lipid II
which negates toxicity in human cells. Also of note is that this
antibiotic has shown minimal resistance [103].

More recently, an environmental bacterium Paenibacillus
sp. was shown to exert a broad-spectrum antibacterial activity.
Examination of this bacterial genome revealed the presence of a
biosynthetic gene cluster (BGC) of colistin and interestingly a
BGC of a lasso peptide subsequently named, lariocidin (LAR)
[104]. Lasso peptides, so called due to their structural knotted
lasso shape, belong to the class of peptides which are synthesised
ribosomally and are subsequently modified post-translationally
RiPPs) [104]. LAR is of major interest due to several reasons, as it
(i) is the first lasso peptide that targets the ribosome to interfere
with protein synthesis, specifically by binding at a unique site in
the small ribosomal subunit and interacting with the 16S rRNA
and aminoacyl-tRNA, to inhibit translocation and induce
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miscoding, (ii) has low propensity mutations spontaneous
resistance mechanisms; (iii) lacks toxicity towards human cells
and (iv) has potent broad-spectrum antibacterial activity against
organisms including A. baumannii [104, 105]

Ethanopharmacology

Phytochemicals, which are bioactive compounds from plants
and numerous research studies have documented that these
are a source of antimicrobial natural compounds due to their
broad spectrum of activity both per se, as adjuvants and
synergistic =~ compounds, enhancing the activity of
conventional antibiotics [106-108]. Chinese herbal
medicine has shown potential in the treatment of
infections including antibiotic resistant infections [108,
109]. Although the precise mechanisms of action are
difficult to elucidate as approximately fifty herbs in
different combinations are employed, research has
identified in the case of coumarins, the blocking of anti-
quorum sensing and biofilm formation e.g. [110] and efflux
pump inhibition [108, 111].

Honey

Honey, in particular Manuka honey, has had a rich history of
being used to treat infections particularly in relation to wound
infections [112], with several clinical trials currently ongoing for
the treatment of wounds such as deep neck abscesses
(NCT06562257), burn wounds (NCT03674151) and recent
research has focused on the potential antibiotic effects of
honey against antibiotic resistant pathogens both in human
and veterinary medicine [113-115]. The antibiotic properties
of honey have been attributed to its physicochemical
properties, such as low pH, low water content and high
osmolarity, as well as its composition of components including
hydrogen peroxide, methylglyoxal (MGO), particularly in the
case of Munuka honey from the Australian bush Leptospermum
sp [116]. and defensin-1, as well as secondary metabolites
originated from nectars, such as flavonoids and phenolic
compounds [117-119]. The composition of honey varies
depending on the botanical source, species of bee,
geographical region and the microbiome of raw honey
contributing to its physicochemical properties [120].

It must be realised however, that the antimicrobial effects
shown by honey are not necessarily attributed to one particular
compound and currently research is focusing on elucidating the
mechanism of action of the diverse antimicrobial compounds
found in honey many of which have been sourced from the bee,
the plant/nectar and the associated microbiomes and microbial
interactions [118]. A recent review by Brudzynski, 2021 [118]
provides an interesting overview of the microbial ecosystem and
the various antimicrobial compounds produced by the
microbiome of honey, the honeybee, originating plants,
bacteria and fungi. Such antibacterial compounds include
ribosomal peptides, non-ribosomal peptides (NRP) peptides,
namely antibiotics, lipopeptide surfactants, siderophores and
polyketides from Bacillus sp. and bacteriocins and autolysins
from lactobacilli (Figure 3) MGO has recently been incorporated
into a novel liposomal formulation containing tobramycin which
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has shown active reduction in biofilm formation, as well as
inhibition of bacterial adhesion highlighting the therapeutic
antimicrobial potential of its components [121].

Spices and Essential Oils

Various spices have been examined for their therapeutic
properties, antimicrobial activity and mechanisms of action
[122], as well as their adjuvant activity in conjunction with
conventional antibiotics against drug resistant organisms e.g.,
M. abscessus [123], polymyxin-resistant Klebsiella aerogenes [124]
and P. aeruginosa [125] and Gram-negative organisms causing
urinary tract infections [126]. Research has focused on not only
pathogens which impact human health but also on the properties
of spices which contribute to the prevention of foodborne
pathogens, food safety and food preservation [127].

Venom

The potential antibacterial properties of venom from various
sources have been shown against drug and MDR pathogenic
bacteria. Most recently, honeybee venom has been demonstrated
to be active against MDR pathogenic bacteria including, E. coli,
Salmonella Typhimurium, and Enterococcus faecalis [128] and S.
aureus [129]. Spider venoms have also been shown to contain a
valuable resource of antimicrobial peptide toxins against
pathogens such as S. aureus in the case of the Lynx spider
Oxyopes forcipiformis [130]. The antibiotic potential of venoms
including antimicrobial peptides sourced from jellyfish [131],
scorpions [132, 133], wasps [134] and insects and centipedes
[135], anti-biofilm substances from snake venom [136, 137] and
antimycobacterial peptides from the venom gland of the cone
snail Conasprella ximenes [138], have provided an evidence-base
for future research into the search and development of novel
antibacterial pharmacological agents.

Extreme Environments
Bioprospecting of extreme environments has identified various
sources of antimicrobials [139]. Below a selection of examples
show that all areas of earth are being explored in the quest to
discover sources of novel antimicrobial compounds.
Antarctica, has been described as the coldest region on earth
by NASA, where the hollows in the high ridge of the East
Antarctic Plateau have recorded air temperatures of -94 °C
and minimum surface temperatures of —98 °C [140] and yet it
has been recognised as a valuable source of novel antimicrobials
following microbial ecology [141] and genome mining [142, 143].
Indeed, potential therapeutic value of these novel antimicrobial
compounds and source organisms, including bacteria, fungi,
lichen, fish, seaweeds, sponges, krill, penguin and springtail
have been recognised resulting in an increasing number of
patents [144]. Antarctic fish/ice fish such as Notothenia
coriiceps, Parachaenichthys charcoti, Trematomus bernacchii
and Chionodraco hamatus, have been shown as a source of
piscidins, which are antimicrobial peptides, with activity
against particularly Gram-negative bacteria and MDR bacteria
[145-149]. Other Dbacterial sources of novel, bioactive
compounds, have been sourced from symbiotic bacteria
colonised on Antarctic fish [150] and bacteria found in
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Antarctic marine soils [151, 152], sediment [153, 154], and
Antarctica marine water [155] and fungi found in lichen [156]
A recent study of interest showed supernatants from several
Antarctic marine bacteria, whilst not antimicrobial per se,
prevented biofilm formation and dispersal of biofilms
produced by ESKAPE pathogens (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacter spp.)
[154]. Other antibiofilm proteins produced by Antarctic
bacteria such as Pseudomonas spp. TAE608 [152] and
Psychrobacter sp. TAE2020 [155] have also been reported.

Bioprospecting has led to the discovery of actinobacteria, with
antimicrobial activity in the Kubugqi desert in China [157].
Streptomyces spp. found in the Saharan desert soils have been
shown to produce a novel broad-spectrum antimicrobial which is
a hydroxamic acid-containing molecule, with antagonistic
properties against MDR pathogens [158]. The soil, in other
remote areas such as caves in China, have been shown to
comprise of Streptomyces spp. which produce xiakemycin A,
which is a novel pyranonaphthoquinone antibiotic, with a
strong inhibitory action against Gram-positive bacteria [159].
A wealth of research is ongoing in sourcing antimicrobials
obtained from global extreme environments, such as
nanoparticles from volcanic silica [160]; antibacterial activities
and compounds including those which inhibit biofilm formation,
from extremophile bacterial [161] and fungal [162]
microorganisms, as well as shrimps [163] within deep-sea
hydrothermal vents and systems. The high-altitude region in
the Andes, namely the Lirima hydrothermal system, located in
the northern region of Chile has been shown to be a source of
secondary metabolites with antimicrobial activity produced by
thermophilic bacteria. [164]. The halophilic environment is also
being explored as a potential source of novel antimicrobial agents
[165], with a recent study reporting that extracts from the soil
from the Dead Sea in Jordan, had an antibiofilm activity against P.
aeruginosa, E. coli, and S. aureus isolated from diabetic patients’
ulcerated wound infections of the feet [166]. The antimicrobial
activity of the Dead Sea soil extract exerted a multifactorial action
in that it (i) inhibited biofilm formation by reducing the
production of extracellular substances and alginate; (ii)
negatively impacted bacterial adhesion by decreasing surface
hydrophobicity; (iii) disrupted preformed biofilms and (iv)
disrupted outer bacterial membranes [166].

PHAGE THERAPY
Clinical Application of Phage Therapy

Bacteriophages, or phages for short, are viruses which infect a
bacterium and undertake a lysogenic or lytic pathway and can
potentially transfer genetic material such as virulence and
antibacterial resistance genes and lyse bacteria, respectively
[167]. Bacteriophages have a number of characteristics which
make them advantageous candidates to treat antibacterial
resistant infections, such as their specificity in relation to
bacterial hosts, the ability to cause bacterial death and their
ubiquitous nature in that they are found in the environment
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TABLE 2 | Ongoing and recently completed clinical trials, within the last 5 years as of May 2025, relating to bacteriophage therapy to treat infections.

Clinical
Trials.gov ID

NCT06605651

NCT06814756

NCT06750588

NCT06409819

NCT06942624

NCT05590195

NCT06370598

NCT06262282

NCT05314426

NCT06938867

NCT06559618

NCT05967130

NCT06870409

NCT06185920

NCT06319235

NCT04724603

NCT05369104

NCT04650607

NCT06368388

NCT05177107

NCT05948592

NCT05488340

NCT06456424

NCT05182749

NCT05537519

NCT06827041

NCT05010577

NCT04682964

Condition

Hip or knee prosthetic joint infections due to
Staphylococcus aureus
Morganella morganii prosthetic joint infection

Acute alcohol-associated hepatitis

(E. faecalis)

Recurrent urinary tract infections in kidney
transplant recipients

Chronic Enterococcus faecium periprosthetic
joint infection

Urinary and vaginal health

Ventilator-associated pneumonia

People with cystic fibrosis and non-
tuberculosis mycobacteria pulmonary
disease

Mayo clinic phage program biobank

Patients scheduled for allogeneic
hematopoietic stem-cell transplantation
receiving fluoroquinolone prophylaxis and
harbouring fluorogquinolone-resistant
Escherichia coli pre-transplant

Spinal cord injury patients with bacteriuria

Chronic urinary tract infection post kidney
transplant
Infective endocarditis

Severe infections

Surgical site infections caused by
Staphylococcus aureus and Pseudomonas
aeruginosa

Phage safety retrospective cohort study

Prosthetic joint infection due to
Staphylococcus aureus

Phage safety in treating prosthetic joint or
severe infections

Difficult-to-treat infections

Diabetic foot osteomyelitis
Diabetic foot infection

Uncomplicated urinary tract infection caused
by drug resistant E. coli

Methicillin-sensitive Staphylococcus aureus
prosthetic joint infection

Shigellosis

Urinary tract infection

Periprosthetic joint infection

Cystic fibrosis patients with chronic
Pseudomonas aeruginosa pulmonary

infection
Tonsillitis

Phase

2

1/2

1/2

1/2

1/2

Observational

Patient registry

1/2

Observational

1/2

Observational

Observational

Observational

2

1/2

1/2

1/2

172

Status

Not yet
recruiting
Not yet
recruiting
Not yet
recruiting
Not yet
recruiting
Not yet
recruiting
Not yet
recruiting
Not yet
recruiting
Enrolling by
invitation

Enrolling by

invitation
Recruiting

Recruiting
Recruiting
Recruiting
Recruiting

Recruiting

Recruiting
Recruiting
Recruiting
Recruiting
Recruiting
Recruiting
Recruiting

Active, not
recruiting
Active, not
recruiting
Active, not
recruiting
Active, not
recruiting
Active, not
recruiting

Active, not
recruiting

Enrolment

100

32

50

100

240

30

20

30

250

52

25

64

100

50

126

80

318

52

32

128

Start
date

01/
2025
24/02/
2025
01/03/
2025
01/06/
2024
05/
2025
01/05/
2024
09/
2024
05/02/
2024

19/04/
2022
25/02/
2025

02/03/
2025
01/07/
2023
05/02/
2025
01/02/
2023
27/10/
2023

01/02/
2021
15/06/
2022
09/05/
2022
01/06/
2021
24/11/
2021
08/11/
2023
13/07/
2022
20/11/
2024
23/02/
2023
01/05/
2023
22/02/
2024
21/06/
2022

02/10/
2020

Completion/ Country
estimated date
01/2027 Unknown
06/2026 Canada
12/2025 USA
30/06/2027 USA
06/2026 Canada
01/06/2025 UK
06/2025 France
12/2028 USA
04/2027 USA
01/04/2026 USA
12/2026 USA
01/07/2027 Islamic Republic of
Iran
05/02/2029 Russian Federation
01/02/2033 France
31/12/2025 Czechia
01/08/2022 France
16/06/2025 France
09/056/2028 France
01/06/2025 Belgium
12/2024 USA
31/12/2024 USA/ India
12/2025 USA
11/2025 Canada
30/06/2025 USA
30/06/2024 Canada
02/2025 Canada
03/2024 USA/ Czechie/ Israel/
Netherlands/ Spain
31/12/2028 Uzbekistan

(Continued on following page)
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TABLE 2 | (Continued) Ongoing and recently completed clinical trials, within the last 5 years as of May 2025, relating to bacteriophage therapy to treat infections.

Clinical Condition Phase
Trials.gov ID

NCT06798168 Periprosthetic joint infection of multidrug Expanded
resistant Pseudomonas aeruginosa access

NCT05453578 Cystic fibrosis individuals chronically 172
colonized with Pseudomonas aeruginosa

NCT05184764 Bacteraemia due to Staphylococcus aureus — 1/2

NCT05616221 Subjects with non-cystic fibrosis 2
bronchiectasis and chronic pulmonary
Pseudomonas aeruginosa infection

NCT04684641 Cystic fibrosis subjects with Pseudomonas 1/2
aeruginosa

NCT04325685 Effect of supraglottic and oropharyngeal N/A
decontamination on the incidence of
ventilator-associated pneumonia and
associated microbiomes

NCT04596319 Subjects with cystic fibrosis and chronic 172
pulmonary Pseudomonas aeruginosa
infection

NCT05498363 Difficult-to-treat infections Observational

NCT04803708 Diabetic foot ulcers 172

NCT04191148 Lower urinary tract colonization caused by 1
Escherichia coli

NCT04323475 Wound infections in burned patients 1

NCT02664740 Diabetic foot ulcers infected by 1/2
Staphylococcus aureus

NCT04815798 Prevention and treatment of Staphylococcus — 1/2

aureus, Pseudomonas aeruginosa, and
Klebsiella pneumoniae colonized pressure
injuries

as well as animals and humans, where the human gut phagosome
has been shown to play a role in gut health and human disease.
[167]. Furthermore, due to their natural existence within the
human microbiome, it is assumed that using such bacteriophages
for therapeutic purposes could be conducted safely and
efficiently [168].

Of particular interest is the real-world application of phage
therapy to treat or suppress infection. Within the scientific
literature, generally such reports are confined to individual
case studies and small cohorts, although there are several
clinical trials and larger studies documented some of which
are ongoing (Table 2), however valuable lessons can be learnt
from such studies. The first reported clinical use of phage therapy
to treat an infection was in 2017 in USA, when a multidrug-
resistant A. baumannii infected pancreatic pseudocyst in a
diabetic patient with a necrotising pancreatitis was successful,
following a nine-phage cocktail administered intravenously and
percutaneously into the abscess cavities [169]. This group
subsequently established the Center for Innovative Phage
Applications and Therapeutics (IPATH), University of
California, San Diego and published details of the outcomes of
requests and ten cases which underwent intravenous phage
therapy, in combination with systemic antibiotics, due to
MDR and antibiotic-recalcitrant infections. The ten cases

Status Enrolment  Start Completion/ Country

date estimated date

Available - - - Canada

Completed 72 03/10/ 10/04/2025 USA
2025

Completed 50 26/24/ 14/01/2025 USA/ Australia
2022

Completed 48 10/01/ 17/07/2024 USA
2023

Completed 8 29/03/ 26/05/2023 USA
2021

Completed 60 01/01/ 01/11/2023 Russian Federation
2020

Completed 29 22/12/ 14/12/2022 USA
2020

Completed 100 01/01/ 31/12/2021 Belgium
2008

Completed 20 22/03/ 07/08/2022 Israel
2021

Completed 36 30/12/ 19/11/2020 USA
2019

Unknown 12 01/ 08/2023 Australia
2022

Unknown 60 01/06/ 08/2024 France
2022

Unknown 69 01/ 12/2023 USA
2022

related to various infections due to S. aureus (n=2), E. coli
(n=1), A. baumannii (n=2) and P. aeruginosa (n=5) [170]. The
preferred route of administration was intravenous although one
patient with pneumonia due to P. aeruginosa additionally
received nebulised phage therapy and where possible a cocktail
of phages was used to minimise the development of phage-
resistance. The authors reported that such phage therapy was
safe and following the initial administration at clinic, patients
were administered their phage therapy at home. Furthermore,
such phage therapy was not only successful as a treatment but
as a suppressive therapy [170]. It is important to note that
although bacterial resistance occurred in 3/10 patients, this
was able to be successfully overcome by introducing
additional phages which had matched with the resistant
bacterial isolates.

Although clinical successes have been noted with respect to
phages in combination with systemic antibiotic therapy, there are
ongoing in vivo studies investigating the mechanisms involved
which could potentially lead to treatment success or failure, the
findings of which have been conflicting. A recent article by
Khosravi et al. serves as a critical evaluation of the phage
therapy in an attempt to promote adjuvant therapy
particularly in the case of individuals with chronic lung
infections, such as those with CF, chronic pulmonary disease,
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non-CF bronchiectasis and individuals with chronic rejection
following lung transplantation [171]. Khosvravi et al. details
evidence to suggest a combination therapeutic approach can
have a synergistic effect and that bacteria can be re-sensitised
to antibiotics. In contrast, there have been studies evidencing
phage-antibiotic antagonism in the form of phage resistance and
enhanced antibiotic resistance, as such it has been proposed that
phage therapy and antibiotic therapy should be staggered to
minimise such resistance [171].

Is Phage Therapy for Difficult Infections a
Reality Within the UK?

Due to the small number of case studies and limited clinical trials,
in 2023, NHS Scotland considered a report from the Scottish
Health Technologies Group (SHTG), in relation to
“Bacteriophage therapy for patients with difficult to treat
infections” [172]. The SHTG critically evaluated the evidence
from the scientific literature and concluded that although there
was a limited evidence-base relating to safety and clinical
effectiveness of such therapy, and the lack of large-scale
clinical trials, such therapeutic approaches have proven
effective in individuals with infections which are difficult to
treat with conventional antibiotics. Due to the lack of
published cost-effectiveness studies, the SHTG undertook an
economic modelling approach to evaluate the potential clinical
use of phage treatment in conjunction with conventional care of
refractory diabetic foot infections in individuals who were at high
risk of lower extremity amputation and concluded this to be of a
potentially cost-effective application of phage therapy. It was also
recommended that the use of phage therapy in Scotland should be
evaluated in terms of clinical effectiveness and safety to further
inform decisions in future applications of phage therapy [172].

More recently, the House of Commons, UK Parliament,
published a Committee report on 3 January 2024, by the
Science, Innovation and Technology Committee relating to
“The antimicrobial potential of bacteriophages”. The
committee considered global witness from academia,
clinicians, regulators, government officials and funding bodies
in the format of oral presentations and written evidence on the
safety, efficacy, manufacturing of phages, phage clinical trials and
clinical use within the UK to date as well as evidence from global
witnesses and site visits [173]. In summary, the House of
Commons Science, Innovation and Technology Committee
made eighteen recommendations, which comprised of four
themes relating to phages namely, safety, efficacy and the UK
phage research base, manufacturing of phages, clinical trials and
the clinical use in the UK [173]. Subsequently, on the 1 March
2024, the UK government responded to these recommendations
and the full policy paper can be viewed at the government website
[174]. In summary, although the UK government accepted that
the current evidence-base of phage therapy was promising, they
believed that further evidence would be necessary to gain a full
understanding of how such therapy could aid in combating AMR
and that they would continue to work and support appropriate
partners to achieve this aim. The UK government also indicated
that phage therapy would be included amongst a range of various
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research areas in consideration for the treatment of AMR
infections both in animals and humans, and the continued
evidence will be reviewed and considered. They also
highlighted what they considered to be the current limitations
relating to the deployment of phage therapy in the UK which
primarily related to “quality assurance, supply chain adequacy,
financial approvals, health, safety and containment, and usage
guidelines” [174]. A potential roadmap for the deployment of
phage therapy within the UK has not been proposed by the UK
government, however Jones et al. have proposed such guidance,
particularly in relation to scalability and Good Manufacturing
Practice (GMP) [175].

To date, phage therapy, is classified as a biological medicine,
and is not licensed by the MHRA in the UK. Jones et al. discuss
the regulatory situation in relation to phage therapy within in the
UK and in short, phages may be used as unlicensed medicinal
products also known as “specials” or “named patient” alternatives
in accordance with MHRA guidance when conventional
treatments are refractive, and the clinician deems an
alternative therapeutic intervention is required [175]. If phages
are imported for such clinical purposes, there is no requirement
to be manufactured according to GMP, however, MHRA
guidance must be adhered to. Phages manufactured in the UK
for the purposes of clinical or investigational use must be
manufactured according to GMP [175].

ANTIMICROBIAL PHOTODYNAMIC
THERAPY (aPDT)

Light emitted at a precise wavelength in association with a
photosensitizer (PS), can generate lethal photo-oxidative stress
by producing detrimental forms of oxygen as radicals or reactive
oxygen species (ROS), resulting in damage to cellular structures,
such as membrane structure, and other components of pathogens
such as DNA, cytoplasmic membrane proteins and lipids. Such
damage alters cell wall synthesis, damages virulence factors and
prevents replication and DNA synthesis [176]. Two types of
photochemical  reactions, result from activation of
photosensitisers, namely Type I which result from the transfer
of radical ions (such as superoxide anions (O,"), leading to the
formation of various free radicals (including hydroxyl radicals
HO, peroxyl radicals ROO and alkoxyl radicals RO) and radical
ions (radical cation of thymine or guanine) and Type II reactions
which result in reactive singlet oxygen species, with both reaction
types targeting various pathogen biomolecules [177].

To date there has been research into the application of this
approach in relation to the treatment of skin cancers; however,
there has also been research into the potential bactericidal and
bacteriostatic role of antimicrobial photodynamic therapy
(aPDT) in tackling ESKAPE pathogens and the AMR problem
in the case of both prokaryotes and eukaryotes [178]. Piksa et al.
have reported on studies, primarily in vitro, which have used
the most common light source, methylene blue in the case of
aPDT in relation to Gram-positive, (primarily S. aureus, E.
faecalis, Streptococcus mutans), Gram-negative (primarily E.
coli, P. aeruginosa, Porphyromonas gingivalis), fungal targets
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TABLE 3 | Ongoing and recently completed clinical trials, within the last 5 years as of May 2025, relating to antimicrobial photodynamic therapy (@PDT) to treat and prevent

bacterial infections.

Clinical Condition Phase Status Enrolment Start Completion/ Country

Trials.gov ID date estimated date

NCT06777511 aPDT to prevent infection in osseointegrated Observational  Not yet 10 01/08/ 30/08/2026 USA
prosthesis patients recruiting 2025

NCT06867458 Nasal decolonization using aPDT on the prevention of ~ N/A Not yet 400 31/03/ 04/08/2025 Canada
hospital-acquired pneumonia, ventilator-acquired recruiting 2025
pneumonia and hospital-acquired bloodstream
infection

NCT06731881 The efficacy of PDT for preventing surgical site N/A Not yet 80 01/01/ 31/08/2025 UK
infections in nasal surgery patients: a pilot study recruiting 2025

NCT06570252 Investigation of aPDT for preoperative nasal cavity N/A Not yet 208 10/ 08/2026 Switzerland
decolonization in adult patients recruiting 2024

NCT06331442 The effect of PDT on accumulation and bacteriological ~ N/A Not yet 50 05/ 11/2024 Croatia
composition of dental plaque in orthodontic patients recruiting 2024

NCT06702878 Nasal antimicrobial photodisinfection for the prevention 3 Recruiting 4514 27/12/ 07/2025 USA
of surgical site infections 2024

NCT06416462 Action of aPDT on wound quality and tissue repair in -~ N/A Recruiting 90 30/07/ 31/06/2026 Brazil
the diabetic foot 2024

NCT05361590 Impact of regular home use of lumoral dual-light N/A Completed 40 11/10/ 16/08/2023 Finland
photodynamic therapy on plaque control and gingival 2022
health

NCT06634745 Evaluation of the effectiveness of aPDT using different  N/A Completed 60 20/06/ 14/07/2024 Turkey
irrigation activation techniques in teeth with apical 2023
periodontitis

NCT05797818 The effect of red light photobiomodulation and topical 1/ 2 Completed 28 10/01/ 08/02/2023 USA
disinfectants on the nasal microbiome 2023

NCT05090657 aPDT for nasal disinfection in all patients (universal) 2 Completed 322 04/02/ 06/08/2022 USA
presenting for surgery at an acute care hospital for a 2022
wide range of surgical procedures

NCT04047914 aPDT in the nasal decolonization of maintenance N/A Completed 34 01/11/ 12/07/2021 Brazil
haemodialysis patients 2019

(primarily Candida species such as C. albicans, C. krusei, C.
parapsilosis), as well as viral and parasitic targets [179]. Although
not routinely used in clinical practice, primarily due to limitations
of using this technology such as a lack of standardisation of
protocols, varying light sources and the varied effectiveness of
this approach, as of 2022 there were approximately 200 clinical
trials using aPDT highlighting the interest and therapeutic
potential of this technology [180], with current interest
primarily relating to periodontal disease [181]. Table 3 details
the most recent clinical trials which are examining the prevention
of infection by nasal decolonisation, disinfection, as well as
wound healing and tissue repair in the diabetic foot. Research
has recently focused on areas which are central to aPDT, namely
the depth of penetration and effectiveness of various light sources
without resulting in thermal issues, such as laser, light emitting
diodes (LEDs), lamp and non-coherent light sources, irradiance
and radiance exposure values and also various photosensitizers,
including those of both synthetic and natural origin, to ensure
high tissue selectivity and that pathogens are selectively damaged
rather than host cells [176]. Such research is important so that the
potential of aPDT can be realised using light sources which are
simple and cost-effective, yet clinically effective [179].

aPDT can offer several advantages in that it alone (i) can cause
an antibacterial effect in the case of planktonic cells as well as
targeting biofilms, (ii) offers limited development of resistance,
due to the multiple sites and its mode of action; (iii) is effective

against a broad range of pathogens, including MDR bacteria; (iv)
has no toxicity, (v) is limited to target cells, (vi) can result in the
reduction of virulence factors and pathogenicity and (vii) can
result in a potential synergistic effect when used in conjunction
with conventional antibiotic therapy and in combination with
other therapies (Figure 4; [178, 181]). It must also be
acknowledged that there are also some limitations to aPDT
therapy including, (i) cost, (ii) weak antibacterial activity in
the case of Gram-negative bacteria, (iii) solubility and (iv)
specificity [176].

Recently several studies have examined the effectiveness of
aPDT against difficult-to-treat and MDR organisms [182] e.g.
carbapenemase-producing K. pneumoniae [183]. Combination of
aPDT with antibiotics have shown favourable and even
synergistic results in the case of MDR organisms such as P.
aeruginosa and S. aureus [184], with recent examples, including
aPDT in combination with (i) gentamicin and imipenem in P.
aeruginosa isolates [185], (ii) colistin against pan-drug resistant
A. baumannii isolated from a patient with burns [186] and (iii)
vancomycin against resistant E. faecium [187]. Other drug
combinations currently undergoing research with aPDT
include efflux pump inhibitors [188] highlighted by two recent
studies, the first of which demonstrated an improvement in
photo-deactivation of E. coli when the efflux pump inhibitor
reserpine was used with methylene blue attached to a silver
nanoparticle carrier [189]. The second study which used
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erythrosine B in conjunction with the efflux pump inhibitor
verapamil and observed an augmentation effect in the
inactivation of MDR planktonic strains of A. baumannii [190].
It has also been shown that aPDT in combination with quorum-
sensing inhibitors resulted in synergistically inhibiting and
dispersing the biofilm produced by MRSA [178] and a
synergistic effect against S. aureus when used in combination
with catalase inhibition [191].

It must be noted that several of these physicochemical
combinations can be used in isolation or in combination
with other therapies and nanoplatforms as antimicrobial
approaches. For example, antimicrobial sonodynamic
therapy (aSDT) uses low intensity ultrasound waves which
can penetrate further than aPDT to a depth of 10 cm in soft
tissues, to excite sonosensitizers to generate cytotoxic reactive
species that are toxic to pathogens and acts by generating
ROS, mechanical pressure and thermal effects [192]. aSDT
alone and in combination approach with contrast
microbubbles, has proven effective in inactivating both
Gram-negative and Gram-positive organisms [193], as well
as enhancing antibiotic efficacy in the case of antibiotic-
resistant bacteria [194] and eliminating biofilms [194].
Furthermore, a recent study demonstrated that a co-
ordination polymer nanoparticle (chlorin e6 (Ce6) with an
antimicrobial peptide) in combination with aSDT had the
ability to eradicate bacteria as well as exert an eradication of
biofilm in the case of MDR-P. aeruginosa [195].

Sonodynamic
therapy

(ultrasound)

Shock wave-
enhanced emission
photoacoustic
streaming (SWEEPS)

Nanoparticle-
photosensitizer
conjugates

Nanoenzymes

Nano particles

FIGURE 4 | Combination approaches used in conjunction with antimicrobial photodynamic therapy to enhance antimicrobial activity. aPDT, antimicrobial

NITRIC OXIDE (NO)

Naturally, endogenous diatomic free radical nitric oxide (NO), is
produced by the first-line innate immune response to invading
pathogens. During oxidative bursts, inducible nitric oxide
synthase (iNOS) enzymes in macrophages and neutrophils,
facilitate the production of NO which subsequently results in
the destruction of pathogens within phagosomes due to
disruption of protein enzymes required for cell function,
modification of membrane proteins and disruption of DNA
via deamination.

Due to the multiple mechanisms of action of NO including (i)
alternation of microbial DNA, (ii) inhibition of enzymes, (iii)
modification of protein targets, (iv) damage to bacterial cell walls,
cytoplasmic membranes and the outer membrane of Gram-
negative bacteria and (v) dispersal of biofilms, the
development of resistance is difficult [196]. As such, its
antimicrobial properties make it a valuable antimicrobial agent
against infectious agents, particularly MDR bacteria. Although
the antimicrobial properties of endogenous NO are well
established, Webster and Shepherd (2024) have provided an
interesting postulation and cautionary note in relation to the
development of novel antibiotics, as they debate that NO may
diminish the efficacy of some antibiotics or counteract
antimicrobials which target bacterial energetics and elevate
metabolism and bioenergetics as part of their bactericidal
mechanism, yet they acknowledge evidence for the enhanced
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TABLE 4 | Ongoing and recently completed clinical trials, within the last 5 years, as of May 2025, relating to nitric oxide therapy to treat infections.

Clinical Condition

Trials.gov ID

Intervention

Inhaled nitric oxide NCT06950294 Critically ill patients with pneumonia

NOX1416; foam based ~ NCT06402565 Chronic non-healing diabetic foot

gaseous nitric oxide ulcers

Inhaled nitric oxide NCT06261827 Prevention of nhosocomial pneumonia
after cardiac surgery

Inhaled nitric oxide NCT06170372 Nosocomial & community acquired
pneumonia

Nitric oxide releasing NCT06264141 Recurrent acute bacterial

solution (nasal spray) rhinosinusitis

Inhaled nitric oxide NCT06041919 Adults with rifampicin susceptible

agent, RESP301, via tuberculosis

nebulisation

Inhaled nitric oxide NCT06162455 Prevention of nosocomial pneumonia
after cardiac surgery

Nitric oxide releasing NCT04755647 Diabetic foot ulcer

solution

Intermittent inhaled nitric ~ NCT04685720 Nontuberculous mycobacteria lung

oxide infection in cystic fibrosis & non-
cystic fibrosis patients

Nitric oxide releasing NCT04163978 Chronic sinusitis

sinus irrigation

Inhaled nitric oxide NCT03748992 Pulmonary non-tuberculous

mycobacterial infection

lethality of antibiotics in the case of biofilms, when used in
conjunction with NO [197].

The off-label use of exogenous inhaled NO gas has been
investigated for the treatment of respiratory infections in
individuals with CF, which are commonly infected with
multidrug resistant organisms [198], including P.
aeruginosa [199], M. abscessus [200] and Burkholderia
multivorans [201], as well as individuals with
nontuberculous mycobacteria (NTM) pulmonary disease
[202, 203]. Results were varied, ranging from reduction in
colony forming units, improved lung function, improved
antibiotic efficacy and a reduction in biofilm aggregates in
the case of P. aeruginosa to improved quality of life and lung
function, reduction in bacterial load but no eradication in the
case of M. abscessus [196] and an improved antimicrobial
susceptibility and clinical outcomes in the case of B.
multivorans [201]. Due to the high reactivity and short
half-life of NO (1-5 s) NO donors have been developed as
well as delivery systems including nanoparticles, which have
shown antibacterial and antibiofilm properties, however
there are several areas which require further research in
relation to potential toxicity issues, mechanisms to ensure
controlled release as well as the optimising penetration of
biofilms before its clinical use can be fully investigated [204].

A recent comprehensive article on the antimicrobial
effects of nitric oxide by Okda et al. details further in vitro
and in vivo studies as well as case studies, pilot studies,
retrospective studies and clinical trials in relation to the
potential and real-world therapeutic application in humans
[196] and see Table 4 for current ongoing and recently
completed trials.

Phase Status Enrolment Start Completion Country
date date
1 Not yet 34 06/ 10/2026 USA
recruiting 2025
1 Recruiting 40 25/ 30/01/26 USA
03/25
N/A Recruiting 160 20/02/ 01/09/2025 Russian
2024 Federation
N/A Recruiting 200 15/02/ 15/01/2026 Russian
2024 Federation
2 Active, not 162 16/01/ 24/02/2025 Bahrain
recruiting 2024
2 Active, not 75 27/09/ 31/07/2025 South Africa
recruiting 2023
N/A Completed 74 1711/ 15/01/2024 Russian
2023 Federation
1/2 Completed 40 23/02/ 20/05/2023 Canada
2021
Pilot Completed 15 07/12/ 10/10/2022 Australia
study 2020
2 Completed 56 27/20/ 03/05/2022 Canada
2019
2 Completed 10 28/01/ 26/03/2020 USA
2019

MICROBIOME MANIPULATION

On 30 November 2022, the FDA approved REBYOTA®, the first
live biotherapeutic faecal microbiota [205, 206], prepared from
human stools donated by screened individuals and administered
by enema, for the treatment of individuals >18 years following
antibacterial treatment for recurrent Clostridioides difficile
infection (CDI). Subsequently, on 26 April 2023, the first oral
therapy of faecal microbiota (VOWST™) was approved by the
FDA [207]. CDI is often seen as a complication of antibiotic
therapy, resulting in the disruption of the normal gut microbiota
and is usually treated with metronidazole or vancomycin.
However, with increasing drug-resistant strains, the incidence
and even mortality rate of refractory CDI is increasing worldwide.
In 10%-60% of cases, the infection returns after completing
antibacterial therapy or may not subside at all. For such cases,
faecal transplantation may be a considerably more effective
option, preventing complications such as, colectomy where
mortality rates have risen to 50% following this procedure
[208]. Severe illness with CDI can ultimately be fatal, therefore
it is essential to choose the correct treatment, and it has been
proven that faecal microbiota transplantation (FMT) can provide
mortality benefit in critically ill patients, with 77% less mortality
rates than with standard antibiotic care [208]. Such microbiome
manipulation restores and harmonises the natural gut
microbiota, replenishing bacterial balance.

The human gut microbiome generally has a good symbiotic
relationship with the host providing (i) a defence against harmful
pathogens through competitive exclusion by means of
modulating the immune system and producing antimicrobials
and (ii) nutritional benefits. The GI tract may also harbour
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TABLE 5 | Ongoing and recently completed clinical trials, within the last 5 years, as of May 2025, relating to faecal microbiota transplantation (FMT) to treat bacterial infections,
other than Clostridioides difficile or eradicate colonisation or restore gut microbiome.

Clinical Condition Phase Status Enrolment Start Completion/ Country
Trials.gov ID date estimated date
NCT06970262 Effect of FMT on intestinal microbiota and pulmonary ~ N/A Not yet 150 15/05/ 31/12/2026 China
microecology in critically ill patients with multidrug- recruiting 2025
resistant organism infections
NCT05981430 FMT for decolonization of carbapenem-resistant N/A Not yet 80 01/01/ 19/08/2025 Hong
Enterobacteriaceae recruiting 2024 Kong
NCT06250413 FMT to restore gut microbiome after treatment with N/A Not yet 40 02/ 12/2027 Finland
antibiotics recruiting 2024
NCT06641778 FMT in patients with multiple drug resistant Klebsiella ~ N/A Recruiting 100 03/12/ 31/06/2026 China
pneumoniae pneumonia 2024
NCT05632315 The impact of FMT using the Penn microbiome therapy 2 Recruiting 150 19/08/ 01/2026 USA
products on recipient and environmental colonization 2024
with multidrug-resistant organisms
NCT05035342 FMT to eradicate colonizing emergent superbugs 3 Recruiting 214 11/01/ 04/2028 France
2024
NCT05791396 FMT to eradicate intestinal colonization by 1/2 Recruiting 36 08/02/ 04/2026 [taly
carbapenem-resistant Enterobacteriaceae 2024
NCT06156956 FMT to eradicate antibiotic-resistance bacteria fromthe ~ N/A Recruiting 200 27/10/ 31/12/2025 Poland
gastrointestinal tract of patients at high risk of infection 2023
and/or to cut off the spread of bacteria with dangerous
mechanisms of antibiotic resistance
NCT06461208 FMT to improve the primary outcome (first 3 Recruiting 300 21/06/ 30/11/2026 UK
hospitalisation due to infection) in patients with cirrhosis 2023
over 24 months
NCT06050148 FMT as means of preventing recurrent urinary tract 2/3 Recruiting 100 08/01/ 31/12/2029 Finland
infections 2023
NCT06782880 Prevention of infectious complications after liver N/A Recruiting 144 01/05/ 31/05/2026 Italy
transplantation 2023
NCT04759001 FMT to eradicate gut colonisation from carbapenem- 1/ 2 Recruiting 52 18/02/ 15/06/2026 ltaly
resistant Enterobacteriaceae 2021
NCT04583098 FMT on the decolonization of carbapenem-resistant Observational  Recruiting 100 14/03/ 31/08/2024 Korea
Enterobacteriaceae or vancomycin-resistant 2019
enterococci in the gut
NCT02543866 FMT as a strategy to eradicate intestinal carriage of 1 Recruiting 20 17/02/ 09/2026 USA
resistant organisms 2017
NCT04014413 Safety and efficacy of FMT: A pilot study N/A Recruiting 450 15/07/ 31/10/2030 Hong
2019 Kong
NCT04790565 FMT for eradication of carbapenem-resistant 2/3 Completed 15 01/04/ 30/06/2022 Israel
Enterobacteriaceae colonization 2021
NCT03367910 Prevention of recurrent urinary tract infections due to  1/2 Completed 1 08/02/ 31/12/2021 USA
multidrug resistant organisms 2018
NCT04146337 FMT for eradication of carbapenem-resistant 2/3 Completed 3 12/10/ 30/06/2022 Israel
Enterobacteriaceae colonization 2020
NCT05461833 FMT in patients with post-infection irritable bowel N/A Completed 59 01/09/ 15/01/2022 Ukraine
syndrome 2020
NCT02312986 FMT to reverse multi-drug resistant organism carriage 1 Completed 1 08/ 31/07/2020 USA
2015
NCT03050515 FMT for the treatment of recurrent urinary tract 1 Completed 12 05/02/ 23/02/2020 USA
infections 2018
NCT03029078 FMT to eradicate digestive tract colonization of patients 4 Completed 50 01/11/ 01/12/2020 France
harbouring extreme drug resistant (XDR) bacteria 2014
NCT04746222 FMT for intestinal carbapenemase-producing 2/3 Unknown 108 o7/ 07/2023 Singapore
Enterobacteriaceae decolonization 2021

opportunistic colonising pathogenic organisms and under certain
conditions such as antibiotic use, acquisition of pathogens during
hospitalisation, poor diet/nutrition, physical stress, mental stress,
travel, pollution, age and pregnancy can result in a dysbiosis,
thereby negatively impacting on the gut microbiota’s
mechanisms to prevent the increase in the colonisation of
harmful pathogens such as MDR organisms (MDROs),

including ESBL producing Enterobacteriaceae, carbapenemase-
producing Enterobacterales (CPE) and vancomycin-resistant
enterococci (VRE) as well as contributing to the gut
resistome [209].

The precise mechanism of FMT is yet to be determined,
however it is speculated that the healthy donor gut flora
repopulates the surroundings with normal gut flora with
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recent research showing that FMT is effective for decolonising
[210, 211] and eradicating the carriage of drug and MDR bacteria
and antibiotic resistance genes [212]. Such manipulation and
modulation of the gut microbiota therefore has a potential role in
the therapeutic challenges associated with AMR in terms of
treatment and prevention [213].

Research has suggested that decolonisation or eradication of
MDROs in the intestine, by means of FMT lowers the risk of
infections and cross-contamination. A randomised control trial
by Woodworth and colleagues demonstrated that FMT can result
in MDRO decolonisation, protection against recurrent infection
and a reduction of AMR by means of strain replacement as
evidenced by replacement of extended-spectrum {-lactamase
ESBL-producing strains with non-ESBL strains [214]. Some
small studies and case studies have also reported that FMT
has successfully eliminated ESBL colonisation of K
pneumoniae and E. coli in the gastrointestinal tract of an
immunocompromised patient [215], decolonised an allo-HSCT
patient with recurrent carbapenem-resistant Enterobacteriaceae
(CRE) infections [216] and prevented negative outcomes such as
mortality associated with MDRO in allogenic hematopoietic cell
transplant patients [217]. Nooij et al. suggested that the effect of
FMT could prevail for a number of years as they observed
three years subsequent to FMT in patients with recurrent C.
difficile infection, patient resistomes were observed which were
donor-like [218]. It is interesting to note, however, that although
the total load of resistance genes had decreased, patients still
possessed higher numbers of various resistance genes compared
to the original donor and that resistance plasmids remained
unaffected by the transplantation [218]. Of further interest is
the report that FMT has been used to eradicate ESBL-producing
K. pneumoniae in the case of recurrent urinary tract infections,
which are often caused by the transfer of faecal material to the
urinary tract [219].

A recent systematic review and meta-analysis of case
studies/series and two randomised clinical trials concluded
that larger sample size randomised clinical trials are
warranted using standardised protocols, so that a
definitive conclusion can be made on the role of FMT on
decolonisation of antibiotic-resistant organisms [220].
Currently, there are several clinical trials ongoing in
relation to FMT and the prevention and decolonisation of
antibiotic-resistant bacteria and MDROs (Table 5).
Although the potential for FMT is to address AMR
challenges, it must be noted that there are issues and
aspects which need to be considered before FMT can
become a robust and routine clinical therapy, including (i)
selection of the ideal recipient, (ii) optimal dosage, (iii) route
of delivery, (iv) screening of donor stools for MDR
organisms to minimise the chances of invasive disease or
death, as previously described [221, 222] (v) duration of
clinical effect, (vi) the effect of confounding factors based on
patient characteristics such as, but not limited to, genetic
factors comorbidities, diet and concurrent medications, (vii)
safety risks and long term side effects, (viii) public
perception, (ix) regulatory issues, (x) balanced clinical and
organisational ethical issues and (xi) an evidence-base to
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provide patients information to reliably make an informed
consent due to currently unanswered points as detailed
above [223-225].

For further information see two recent systematic reviews on
FMT which focus on antibiotic-resistant bacteria [226] and
CRE [227].

PREDATORY BACTERIA

Predatory bacteria which have the ability to kill and ingest other
bacteria are classified as “living antibiotics” [228-230]. These
ubiquitous prokaryotes are found in soils and aquatic
environments including seawater, rivers and wastewater and
are classified according to their feeding behaviour, falling into
two categories: obligate and facultative predators. The predator
most studied is Bdellovibrio bacteriovorus which is a Gram-
negative, 6-proteobacteria and one of the obligatory predatory
bacteria classified under the umbrella terminology Bdellovibrio
and like organisms (BALOs) and its prey are Gram-negative
bacteria [228, 231].

Bdellovibrio bacteriovorus has been examined for its potential
as an antibacterial approach to treat Gram-negative infections
and has the characteristics, which in theory correlate with an ideal
therapeutic agent in that it (i) can kill Gram-negative organisms
in a short time, in less than 30 minutes, and as such would not
permit its prey to mount a defence quickly; (ii) does not result in
the autolysis of its prey and hence inflammatory molecules are
not released and (iii) as prey recognition and attachment is not
dependent on a single receptor and following invasion the
upregulation of prey destructive enzymes, both in terms of
number and diversity, suggests that Gram-negative resistance
to Bdellovibrio bacteriovorus is unlikely to occur [228, 232].

Various cell and animal models have been utilised to
investigate the mechanism of prey recognition and therapeutic
potential of these predatory bacteria and Atterbury and Tyson
have extensively reviewed such studies in relation to the
therapeutic potential of Bdellovibrio [228]. More recently, in a
rabbit model of endogenous endophthalmitis, it was
demonstrated that the Bdellovibrio bacteriovorus and
Micavibrio aeruginosavorus reduced the proliferation of
isolates of a fluoroquinolone-resistant P. aeruginosa and
Serratia marcescens [233], highlighting their potential as a
novel approach to treat antibiotic-resistant organisms. To date,
studies relating to predation susceptibility of clinical isolates are
limited, however, an interesting study by Saralegui et al.
demonstrated the predation efficiency of Bdellovibrio
bacteriovorus on clinical isolates of P. aeruginosa relating to
CF and bloodstream infections [234]. The key findings in this
study indicated that there was no correlation with predation
activity in relation to P. aeruginosa genetic lineage, and in the case
of CF, isolates of mucoid or non-mucoid phenotype or antibiotic
susceptibility phenotype, but there was a higher qualitative and
quantitative susceptibility to Bdellovibrio bacteriovorus of CF
isolates in comparison to bloodstream infection isolates [234].
From the findings of such research, it re-enforces the importance
of characterising each predator’s specific prey spectrum if such
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predators are to be considered as “living antimicrobial agents” to
ensure that predation resistance is overcome in relation to specific
prey species and individual strains within the species, as the
specific prey spectrum of each predator can vary depending on
the source of the predator, as well as the source of the prey.

IMMUNOTHERAPY

Immunotherapy approaches target the host immune system and
have been extensively and primarily used in the treatment of
cancers but also autoimmune diseases e.g., multiple sclerosis,
rheumatoid arthritis. More recently due to the similarities
between cancer and persistent bacterial infections in relation
to immune suppression and dysregulation particularly in the case
of infectious bacteria which result in granulomas e.g. tuberculosis
and non-tuberculous mycobacteria, interest and research has
been turned to immunotherapeutic approaches as a potential
treatment [235]. McCulloch and colleagues discuss in-depth the
mechanisms by which bacteria “hijack” the host immune
response resulting in immunosuppression and suggest how
therapeutic approaches could manage macrophage function,
block immunoregulatory pathways and promote the killing of
pathogens in infected cells and contribute to macrophage
bactericidal mechanisms [235]. Various immunotherapy
approaches have been investigated for infections including
some of the WHO priority agents such as Acinetobacter
baumannii, P. aeruginosa, S. aureus, MRSA, Streptococcus
pneumoniae and M. tuberculosis, with the majority of studies
in preclinical and some limited clinical trials [235, 236]. Several
immunotherapy approaches are currently being investigated
including (i) immunomodulators such as checkpoint inhibitors
whereby monoclonal antibodies are used to block regulatory
molecules (checkpoints) which have reduced the clearance of
pathogens and in turn restore the host’s immune function; (ii)
cytokine therapy to aid in the regulation of cellular processes
including  inflammation, = humoral = immunity  and
immunosuppression and (iii) cellular therapy using genetically
engineered immune cells such as chimeric antigen receptor
T cells [235]. (See [236] for a comprehensive list of clinical
trials). Immunotherapeutic approaches including the use of
vaccines have a realistic potential in the treatment of
antibiotic-resistant organisms and offer numerous advantages
over conventional antibiotic therapy.

VACCINE DEVELOPMENT TO
TACKLE AMR

The primary goal of vaccination is to protect individuals from
becoming ill and to reduce the transmission of pathogens which
is of particular importance in the case of infections caused by both
antibiotic-resistant and susceptible pathogens. The goal of
vaccination is to decrease such infections, resulting in both a
decrease in transmission, ideally by herd immunity, the
prevention of secondary complications, a reduction in
antibiotic use as well as the evolution of antibiotic resistance
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genes and the development of antibiotic resistance in individuals,
thereby preserving effective antibiotics [237, 238].

Recently, the WHO produced a report which evaluated the
potential impact of human vaccines already licensed, in clinical
development or hypothesised, in terms of reducing AMR and
antibiotic use [238]. This report was a cumulation of a robust
evaluation conducted over a two-year period, during which two
newly created technical groups relating to vaccines and AMR
provided expert knowledge and critical evaluation of data
analyses. The purpose of this report was to serve as a guide to
the feasibility of vaccines of priority, in relation to biological,
product development and implementation feasibility [237, 238]
and was intended to promote the recognition of the role vaccines
offer in the fight against AMR and as such, the report will be of
interest to various global stakeholders, including funding bodies,
individuals involved in both vaccine research and development
and clinical trials, national decision and policymakers, healthcare
workers, civil societies or organisations involved in public health
and other non-governmental organisations, as well as regulators.
Twenty-four pathogens were selected, based on three criteria
namely (i) high incidence of resistance; (ii) resistant pathogens
with a high mortality rate and/or (iii) the high volume of
antibiotics used in treating such infections [238]. The
pathogens included the bacteria, A. baumannii, Campylobacter
jejuni, C. difficile, Enterococcus faecium, Enterotoxigenic
Escherichia coli (ETEC), Extraintestinal pathogenic Escherichia
coli (ExPEC), Group A Streptococcus (GAS), Haemophilus
influenzae type b (Hib), Helicobacter pylori, K. pneumoniae, M.
tuberculosis, N. gonorrhoeae, Nontyphoidal Salmonella, P.
aeruginosa, Salmonella Paratyphi A, Salmonella Typhi, Shigella,
Staphylococcus aureus and Streptococcus pneumoniae, the parasite
Plasmodium falciparum as well as four viruses, Influenza,
Norovirus, Rotavirus and Respiratory syncytial virus (RSV)
[238]. This 168-page report provides an in-depth analysis of
how such vaccines could avert deaths, disability-adjusted life
years (DALYs), in-hospital costs and daily doses (DDs)
annually, all associated with AMR, as well as promoting the
importance of enhancing surveillance and awareness of AMR and
antibiotic use, particularly when assessing the value of vaccines in
development. An infographic of some of the key messages of this
report is shown in Figure 5. See section below in relation to the
potential role of artificial intelligence (AI)
development.

in vaccine

ADVANCES IN TECHNOLOGY

There have been several key advances in technology which have
enhanced in the search, development and research of novel
antimicrobial therapies and their potential efficacy.

Artificial Intelligence

There has been a recent expansion in the scientific literature of
research groups using various artificial intelligence [239],
machine learning (ML) formulae and deep learning algorithms
to aid in antimicrobial repurposing and drug discovery by mining
for novel antibiotic compounds both from virtual libraries [240,
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WHO Report into The Role of Vaccines Against AMR
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AMR: important global public health & development threat\
- 5 million deaths associated with AMR (2019)
- Vaccination could have prevented 515, 00 of these deaths
Under-recognised role of vaccines in reducing AMR
- reduce incidence of infections & transmission of pathogens,
- reduce antibiotic use and in turn evolution of resistance genesy
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Licensed vaccines / Phase 3 of clinical development
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@ (high feasibility of development & implementation)
- some vaccines are already reducing AMR
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New vaccines against tuberculosis under development
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progression of latent infection to active disease
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projected moderate impact on reducing antibiotic use
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Recognition of the impact of vaccines
by key stakeholders
Immunisation strategies should include, advocate, integrate and
implement vaccine delivery

G

J
] ] ] )\
Accelerated introduction & increased
coverage of existing vaccines
- paediatric vaccines should reach IA2030" immunisation targets
- consider use of vaccines in older age groups
- monitor impact of existing vaccines on AMR to inform policy

Preparation for the introduction of new vaccines
The impact of vaccines on AMR should be systematically
evaluated & embedded into :-

- existing decision, regulatory & policy frameworks
- cost-effectiveness studies
- national immunisation strategies

_4

-

®

\

Vaccine development, facilitation, delivery & implementation \
- include AMR endpoints in clinical trials

- develop preferred product characteristics for vaccines

- create research roadmaps for challenging vaccines

- ensure access to vaccines for high-risk populations

- engage with regulatory agencies

- consider synergistic combination vaccines

- target non-human reservoirs through One Health approaches /

Q@

A

/ Implementation of comprehensive AMR containment strategies

©

Raise awareness of resistant pathogens

Monitor & Gather Data

- Enhance surveillance platforms

- Assess health & economic burden of AMR

- Gather data on vaccine impact on prevalence of AMR & antibiotic use
- Evaluate vaccines in development (considering equity & healthcare)

org/).

241] and natural sources, such as traditional medicines [242] and
predicting potential compounds with antibacterial efficacy
against multiple bacteria including carbapenem-resistant
Enterobacteriaceae and pan-resistant A. baumannii [240],
antibiotic-resistant B. cenocepacia, ESKAPE pathogens [241],
M. tuberculosis [243] and M. abscessus [244], as well as
predicting toxicity [245]. See [245] for a comprehensive
overview of the algorithms and types of learning used in
antimicrobial drug discovery and screening and [246] for a
glossary of key artificial intelligence (AI) terms.

AT has been used to mine biological sequences contained
within large databases for AMPs as well as to generate
potential AMPs and predict the properties, activity and
toxicity of such AMPs [75, 239]. Such technological
approaches which encompass prediction models, not only
expedite the discovery of antimicrobials but may also lead to
the discovery of new classes of antimicrobial drugs which can be
subsequently validated by in vitro, in vivo studies and clinical
trials. AI has also been used in the development of other small
molecule antibacterial drugs, development of bacteriophage
therapy from identification, prediction of phage virion

FIGURE 5 | A summary of the key findings and recommendations published by the World Health Organization (WHO) in relation to, “Estimating the impact of
vaccines in reducing antimicrobial resistance and antibiotic use”. AMR, antimicrobial resistance; *Immunization Agenda 2030 (https://www.immunizationagenda2030.

proteins, host prediction and interactions and lifestyle
prediction and the discovery of antibacterial essential oils
[247]. Two recent review articles have detailed antibacterial
drugs which were developed using AI, which target antibiotic-
resistant and MDR Gram-negative and Gram-positive organisms
including, Carbapenem-resistant Acinetobacter baumannii
(CRAB), Carbapenem-Resistant Pseudomonas aeruginosa
(CRPA), carbapenem-resistant Klebsiella pneumoniae (CRKP),
Carbapenem-resistant Enterobacterales (CRE), MDR E. coli, as
well as priority pathogens P. aeruginosa, M. tuberculosis and A.
baumannii, amongst others [247, 248].

Al and deep learning in conjunction with convolutional
neural networks (CNN), recurrent neural networks (RNN)
and data mining, can also be used to identify disease patterns
and aid in the detection and identification of pathogens, the
diagnosis of infection, the prediction of AMR development and
determination of antimicrobial susceptibility which can aid in the
development and guidance of clinical decisions including
therapeutic treatment [239, 249]. On a cautionary note, the
use of AI technologies utilising machine learning or large
language models to offer guidance on antimicrobial therapy
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have their limitations and several concerns as detailed in a recent
systematic review, particularly in relation to prescribing errors,
safety risks and the management of complex clinical cases. It is
therefore essential that input and final clinical decisions are made
by infectious disease clinicians [250].

Al and ML based approaches have been used to aid in the
understanding of infectious diseases as well as in the selection of
components of vaccines and the identification of potential
antigens which could trigger appropriate effective host
immune responses, with a long duration and efficacy [251].
The use of high throughput genomic and proteomic data can
be used to build predictive models of infection and vaccine
design, thereby reducing the time historically required to
detect relevant antigens. Approaches such as reverse
vaccinology which uses bacterial genomes and computational
informatics led to the successful development of the Bexsero
4CMenB meningococcal vaccine which is now routinely used in
the UK child immunisation schedule [252]. Kaushik et al
critically evaluated the use of Al-based approaches, including
Al-powered reverse vaccinology platforms to aid in the
development of vaccines and summarised research which has
been conducted to date on MDR bacteria such as P. aeruginosa, S.
pneumoniae, K. pneumoniae, E. coli, S. aureus and A. baumannii.
Although the value of Al in vaccinology is recognised, there are
practical concerns and limitations which should be
acknowledged including the difficulty associated with
intensive computation and the requirement of skilled
personnel to implement and interpret such data, the
availability of limited data sets and the reliability on
commercial tools. It is also important that AI complements
rather than replaces conventional laboratory vaccinology
approaches which are required to determine vaccine efficacy
and safety. Of note, in September 2025, The University of
Oxford in partnership with the Ellison Institute of Technology,
received research funding of £118m to use Al to help elucidate
the immunogenic mechanisms of pathogens such as S.
pneumoniae, S. aureus and E. coli, amongst others, to help
in the development of vaccines which are urgently needed
[253]. This highlights that AI will continue to have a
prominent role in the development of vaccines against MDR
bacteria of major clinical concern.

Organ-on-a-Chip

A novel technology, organ-on-a-chip (OOC), is an in vitro 3D
microfluidic model which is superior to conventional 2-D and
3D- cell culture models and animal models. It can be used for the
purposes of infectious disease modelling [254], drug discovery/
screening [255], the preclinical evaluation of drug target sites,
drug absorption, distribution, metabolism, and excretion
(ADME) and drug toxicity [256, 257]. OOCs offer in vitro
models which allow cells to be maintained in an environment
which is more representative of the in vivo human physiology,
with microchannels enabling the control of the cellular
environment and facilitation of the examination in relation to
both biochemical and physical cues [257]. OOC models mimic
the pathophysiology of a specific organ or tissue and they can be
used in conjunction with multiple OOCs (MOOCs) to mimic the
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multi-organ systems in the human body, e.g. a MOOC,
comprising of skin, liver, kidney and intestine to evaluate
ADME [257, 258]. Kidney OOCs have been used to examine
antibiotic nephrotoxicity induced by ciprofloxacin, gentamicin
and a novel formulation of polymyxin B [259, 260].

The superiority of this technology offers the benefit of
decreasing the use of animal models, as they can be used to
screen for toxicity of novel drugs prior to pre-clinical trials, which
aligns with the recent 2022 change to the FDA legislation,
regarding new medicines in that potential drugs no longer
need to be tested for safety and efficacy in animals but the use
of other non-animal models prior to human trials is permitted
[261]. This change has been welcomed by animal welfare
organisations as well as OOC researchers, particularly as more
than nine in ten drugs which undergo clinical trials ultimately fail
as they are unsafe or ineffective [261].

It must also be acknowledged that there are also a number of
limitations in relation to (i) the lack of standardisation including,
but not limited to, defining OOC, the manufacturing of OOC,
including materials used and the production process, sources of
cells and biological materials, sterility, quality and test protocols
[262], (ii) the development of a universal medium when using
different cell types and organs in the case of MOOC, (iii)
technical issues such as the absorption of drugs and small
molecules (<1 kDa) to polymeric materials such as
polydimethylsiloxane (PDMS), which are used in many OOC
devices, (iv) challenges in replicating the interactions between
various organs in the host, (v) the lack of current regulation and
(vi) cost effectiveness [263]. Steps have been taken in relation to
addressing these issues, particularly relating to standardisation by
the development of a roadmap for OOC standardisation
published by the European Commission’s Joint Research
Centre (JRC) [264] and The UK Organ-on-a-Chip
Technologies Network [265].

The OOC technology is currently being developed in relation
to vaccination research by various groups [266] including the UK
Health Security Agency’s Vaccine Development and Evaluation
Centre (VDEC) [267]. Such advances have included the
development of MOOC chip models including an OOC lymph
node [268]. As such, the future of this OOC approach could prove
beneficial to the development and evaluation of vaccines targeting
pathogens, including antibiotic-resistant organisms.
Furthermore, with OOC models using host stem cells could
facilitate personalised medicine [269] and particularly in
relation to antibacterial therapy and prevention. A similar
microfluidic technology, known as lab-on-a-chip has recently
been proposed to simplify and minimise the time taken to predict
antimicrobial susceptibility, which has the potential to enhance in
the selection of appropriate and efficacious therapeutic
options [270].

CONCLUSION

In conclusion, the ever-increasing development of antibiotic
resistance is causing global problems in terms of treatment of
infectious diseases and novel antimicrobials and therapeutic
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approaches have been researched and developed in an attempt
to decrease the mortality and morbidity associated with AMR.
This overview of current research of novel approaches to
prevent and treat infections particularly those which are MDR
and associated WHO priority pathogens, highlights the global
efforts which research groups continue to make in an attempt
to diminish the impact of AMR on human health. Such
innovations offer a welcome prospect, however,
considerable challenges remain in terms of regulatory
development, delivery, efficacy, safety and clinical
evaluation and application. Although the search for novel
antimicrobials continues and many of these therapeutic
approaches have demonstrated proof of concept, it must be
recognised that these are still in pre-clinical or in early stages
of clinical trials. It is therefore essential that funding remains
available for further development and more clinical trials
which are required to fully evaluate the safe clinical
applicability of such novel molecules and approaches.
Furthermore, to date, research has focused on a narrow
spectrum of pathogens and specific patient groups, which
would require broader expansion due to the rise of antibiotic-
resistant organisms causing infection both in the community
and healthcare settings. Moving forward, the complexity of
AMR as well as the growing number of innovations to combat
AMR as discussed in this review, present challenges as to how
best to proceed at local, national and international level.
Various governments have attempted to integrate these
factors by producing strategic plans, such as the “UK 5-
year action plan for antimicrobial resistance 2024 to 2029”
[271] and the EU’s “Council Recommendation on stepping up
EU actions to combat antimicrobial resistance in a One Health
approach” [272]. The future is optimistic in that these novel
approaches, although not replacements for conventional
antibiotic therapy, could have a synergistic and/or reversal
role alongside conventional antimicrobial therapy, to provide
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