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Brain network pathophysiology
In dystonia
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Dystonia is increasingly recognized as a disorder of brain networks. This review
integrates multimodal evidence from human studies to characterize the
network-level pathophysiology of dystonia. Structural MRI studies using
voxel-based morphometry and diffusion imaging reveal alterations in gray
matter volume and white matter connectivity across the sensorimotor
cortex, basal ganglia, cerebellum, and thalamus. Functional imaging
modalities, including PET, fMRI, EEG, MEG, and fNIRS, demonstrate aberrant
activity and connectivity in cortico-striato-pallido-thalamocortical and
cerebello-thalamocortical loops. Invasive electrophysiological recordings
from deep brain stimulation (DBS) provide high-resolution insights into
abnormal oscillatory activity and effective connectivity within these circuits.
Non-invasive brain stimulation (NIBS) techniques such as TMS, TES, and TUS
provide a means of actively interrogating those networks through transient
perturbation. They also provide an avenue for personalized neuromodulation.
Computational models, including The Virtual Brain platform, enable integration
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of multimodal data to simulate dynamic network behavior. Across focal,
generalized, and genetic forms of dystonia, shared patterns of network
dysfunction are observed, though phenotypic and genotypic subtypes
exhibit distinct topographies and circuit-level alterations. These findings
underscore the importance of network dysfunction underlying dystonia. This
network perspective informs the development of more targeted and
individualized diagnostic and therapeutic approaches, including circuit-
guided neuromodulation and closed-loop brain stimulation. Advancing
multimodal and integrative methodologies will be essential to unraveling the
complex dynamics underlying dystonia and translating mechanistic insights

into precision interventions.
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Introduction

The current view of how the brain functions is that of networks.
Networks play a key role in human brain function. The original
movement away from a phrenology view came from the German
school at the end of the 19th century and the beginning of the 20th
century with Broca’s and Wernicke’s studies of language and
aphasia and Liepmann’s studies of movement and apraxia [1].
They stressed the importance of information flowing from one
part of the brain to another underlying function. This view
was attacked by the British school, including persons such as
Head, calling these neurologists “diagram makers” and
adopting a more gestalt view of brain function. Geschwind
[2, 3] in a game-changing two-part paper in Brain in 1965,
brought back the idea of the importance of brain connections
to understand normal function and pathophysiology, and,
stimulated by advances in MRI and EEG [4], networks have
become the predominant model once again.

Increasing data demonstrate that normal movement depends
on network function. Similarly, the pathophysiology of
disordered movements reflects dysfunction at the network
level [5]. This approach provides a basis for understanding
the pathophysiology of dystonia.

Dystonia is defined as a “movement disorder characterized
by sustained or intermittent abnormal movements, postures, or
both” [6]. There are many syndromes of dystonia (axis 1) and
many etiologies (axis 2). The pathophysiology of the movement
disorder, however, appears to have similarities across this wide
spectrum. While it is always optimal to treat the etiology of a
disorder since that might eradicate it completely, when this is not
possible, it is still often achievable to treat the symptoms.
Understanding the network dysfunction, therefore, is not only
useful in improving general knowledge about dystonia but also
helpful for development of symptomatic treatment. Indeed, this
is already clearly the case, since dystonia can be responsive to
DBS whose mechanism of action includes brain circuit
modification [7].
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Studies of the pathophysiology of dystonia over the last
several decades have revealed some fundamental abnormalities
[8, 9]. The notion that dystonia is a network disorder dates back
to at least the 1990s [10, 11] and continues to the current decade
[12]. The motor network in particular has been suggested [13],
and motor dysfunction in dystonia is often manifest as co-
contraction of agonist and antagonist muscles [14]. There is
also a loss of reciprocal inhibition at multiple levels, including in
the spinal cord [15], in the brainstem in the form of enhanced
blink reflex recovery [16], and in the motor cortex [17, 18]. One
specific type of inhibition lost is surround inhibition, which
predisposes to overflow movement and loss of selective motor
control. In addition to overt abnormalities in the motor system,
subtle abnormalities also affect the sensory system, including
abnormal blood flow responses to vibratory stimulation [19, 20].
There are also abnormalities of brain plasticity with slow motor
learning, some types of exaggerated plasticity, and loss of
These
abnormalities, presumably resulting from brain miswiring

homeostatic ~ plasticity  [9]. various  physiological
and/or dysfunction of neurotransmitters such as GABA and
dopamine and arising from genetic and environmental factors
[21], are likely associated with brain network dysfunction.
This review focuses on multimodal evidence in humans of
brain network dysfunction and how it might be ameliorated.
Other recent reviews also cover network dysfunction in dystonia,
though they exclude genetic etiologies and include rodent models
[22] or focus on how DBS has provided insights into the brain
networks and physiological mechanisms that underlie motor
control, covering not only dystonia but also Parkinson’s

disease with substantial attention to animal models [23].

Organizational overview

A multitude of methods exist for studying brain networks in
dystonia. In this review, we have organized them into four main
categories: non-invasive brain imaging, invasive brain recordings
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associated with DBS, non-invasive brain stimulation, and models
of brain network dysfunction.

The first part of the review summarizes results from non-
invasive brain imaging, the primary measures of network activity
currently available for use in humans. The imaging modalities
include 1) computed tomography (e.g., for lesions); 2) structural
MR, involving information about grey matter structures from
voxel-based morphometry and white matter pathways from
diffusion MRI;
(fNIRS), 4) positron emission tomography (PET), including

3) functional near-infrared spectroscopy
metabolic patterns and the functions of neurotransmitters
such as dopamine, GABA, and acetylcholine (Ach); and 5)
functional MRI (fMRI), including both resting-state and task-
related conditions; and 6) EEG.

The second part of the review summarizes results from
invasive brain recordings associated with DBS. Compared to
brain imaging methods, recordings during and after DBS surgery
enable measures of brain activity with much higher spatial and
temporal precision. The temporal precision enables analyses of
stimulus-evoked responses and pathological synchronized
oscillations hypothesized to play a role in the network
pathophysiology. However, these recordings are generally
limited to only those locations in the brain that are clinically
indicated. Nevertheless, combining imaging enables a broader
assay of network effects, and there is increasing use of recordings
made simultaneously in multiple DBS targets.

The third part of the review summarizes results from non-
invasive brain stimulation (NIBS). These include many
applications of TMS and TES that have been explicitly
the hallmarks of
by decreasing excitation,

designed to normalize dystonia

pathophysiology increasing
inhibition, and modulating abnormal plasticity. Another NIBS
method more recently explored in dystonia is transcranial
ultrasound stimulation (TUS). All the NIBS modalities could
be optimized for each patient by leveraging the various recording
modalities, and in some cases (e.g., with EEG, TMS, and TES),
this can be done on-line in a closed loop.

The fourth part of the review highlights models for brain
network dysfunction in dystonia. Historically, brain network
models were constrained in their level of detail and breadth of
scope by limitations of computational resources. Continuing
advances in computing technologies have dramatically
expanded those boundaries, as evidenced, for example, by
of The Virtual Brain (TVB),

informatics platform to simulate whole brain dynamics.

recent developments an
Although it is designed to work at the gross level of mean-
field dynamics, this spatial level of abstraction is a good match for
a large body of prior and ongoing experimental work with brain
imaging measures.

The fifth part of the review outlines future directions for
applied research into network pathophysiology of dystonia. It
points out methodological and analytic standards that could
strengthen interpretation of future imaging studies, how
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advances in DBS technology can provide novel clues about
network pathophysiology, and that aspects of longitudinal and
developmental dynamics on the dystonia network remain
understudied. It also notes how motor behavior can provide
important constraints on circuit models of the dysfunction. For
example, overtrained movement patterns are thought to be a
causal factor in many task-specific dystonias, and conversely
properly designed physiotherapy interventions should be able to
modulate the dystonic network toward normalized function. The
relationships between genotype and phenotype-especially as
both axes become better understood and characterized
objectively-should also provide a helpful framework for
understanding dystonia network pathophysiology. Finally, two
specific phenotypic aspects of dystonia are highlighted as
meriting more future investigation: tremor in dystonia and
functional dystonia. Collectively all these research directions
will help maximize what we can learn about the network
pathophysiology of dystonia.

Woven throughout all parts of the review are a wide array of
analytic methods, a variety of tasks, differential network findings
for various dystonia subtypes defined phenomenologically and
genetically, and the influence of treatments, including not only
botulinum toxin (BoNT) but also DBS and TMS. Future efforts to
synthesize these multiple approaches to understanding brain
network dysfunction will accelerate progress toward new
treatments that directly target the neural network basis
of dystonia.

Non-invasive brain imaging

In routine clinical imaging, most dystonia patients exhibit no
overt abnormalities [13]. Regional and network changes are
generally subtle and more functional than structural: one may
show abnormal function despite structurally normal scans [24].
Functional disturbances often manifest as abnormal network
interactions involving basal ganglia, cerebellum, thalamus, and
cortex [25]. Bhatia et al. [26] identified lesions associated with
dystonia on CT and MRI; their heterogeneous locations
suggested that their involvement could be accounted for with
dysfunction of a network. Focal lesions may not appear on CT or
MRI yet can be evident on functional imaging with PET [27].

Lesions

In dystonia, lesion-based studies most often implicate the
basal ganglia and thalamus [26, 28]. Pediatric lesion-induced
dystonias - including from hypoxia, kernicterus, and stroke -
implicate two basal ganglia nuclei in particular: the putamen and
globus pallidus (GP) [29].
“somato-cognitive-action network”

These nuclei participate in the
(SCAN) that
MI and plays a role in motor integration [30] and the

involves
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«  Blepharospasm * \ FA primary sensory and motor internal capsule
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frontal, occipital, inferior parietal lobule, superior temporal
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+ \ FAin posterior internal capsule, tract
reconstructs to sensorimotor cortexand
brainstem

+ L FA& M MD corticobulbar and
corticospinal tracts

« { tractography streamlines for
corticobulbar tract

*  Variably N/ LFA in basal ganglia structures

+ U R2*globus pallidus

+ /N MD &RadDin R putamen and caudate

« N FAbilateral thalami and anterior thalamic
radiation

+ N volume posterior putamen and globus
pallidus; in pianists putamen volume
increased compared to healthy pianists

N GM volume putamen
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lenticularis to brainstem

*  FA dentatorubrothalamic tract

& FA L cerebellar peduncle

/N FA L substantial nigra * L GM volume right cerebellar
' GM volume left midbrain hemi: eand cerebellar

(c) Comparisons between dystonia
* Lower local efficiency in paroxysmal kinesigenic
dyskinesia PRTT2 carriers vs non carriers
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Comparison fasciculus and R sagittal striatum
*  Genotypic differences + L FAin TSDvs NTSD: middle inferior frontal gyrus,
+  Phenotypic differences: TSDvs corpus callosum, internal capsule
NTSD « L FAin NTSDvs TSD middle cingulate gyrus, left inferior
+  Phenotypic differences: body part parietal lobule
affected +  More widespread \, FA in TSD vs NTSD
+  More widespread GM volume differences in TSD
I + U FAin adductor vs adductor spasmodic dysphoniain
right superior corona radiata and splenium of corpus
callosum

+ L FAin TSD vs NTSD right premotor
cortex, and in NTSD vs TSD left primary
sensorimotor cortex
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underlying leg area without leg dystonia
compares to with, and underlyingarm
area without dystonia compared to with
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\ FAin caudate in cervical
dystonia compared to
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Basal ganglia
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FIGURE 1

Summary of structural MRI differences relative to healthy controls in dystonia based on genotype, whether the phenotype is task specific, and

the body parts affected for (a) genetic dystonias, (b) idiopathic dystonias, and (c) comparing the types of dystonia. FA, fractional anisotropy; GM, grey
matter; WM, white matter; L, left; R, right; TSD, task- specific dystonia; NTSD, non- task- specific dystonia. Reproduced with permission from [40].

Dystonia 04 Published by Frontiers


https://doi.org/10.3389/dyst.2025.15446

Peterson et al.

“cingulo-opercular/action-mode network” (CON/AMN) that
includes the dorsal anterior cingulate and anterior insula [31],
indicating that basal-ganglia injury can influence higher-order
motor planning as well as execution. Cortical lesions also
contribute: in BSP involving both idiopathic and acquired
forms, meta-analytic connectivity modeling revealed bilateral
SMA abnormalities [32]. In lesion-based CD [33], affected

sitess were functionally connected within a network
encompassing the cerebellum, GP, striatum, midbrain,
thalamus, and somatosensory cortex-a pattern likewise

observed in isolated CD.

Voxel-based morphometry (VBM) and
diffusion MRI

VBM quantifies local grey and white matter concentrations
across the brain based on structural MRI. Diffusion MRI (dMRI)
assesses water diffusion to infer the integrity and connectivity of
white matter tracts linking distant regions. Together, these
methods of
networks, and diffusion-tractography studies have revealed

enable whole-brain assessment structural
differences in pathways connecting regions implicated in
dystonia pathophysiology.

Structural neuroimaging studies using VBM and diffusion
imaging report grey and white matter abnormalities in regions
subserving motor execution and sensorimotor integration
[34-36]. Although there have been differences between studies
and types of isolated dystonia, common abnormalities across the
subtypes may occur in sensorimotor, premotor, and parietal
cortical areas, basal ganglia, thalamus, and cerebellum [37-39].

Maclver at al provided a critical analysis of methods and
results from 37 volumetric and 45 dMRI studies in dystonia [40].
Regional volumetric results appeared highly variable but
abnormalities in brainstem, cerebellum, basal ganglia, and
sensorimotor cortex occurred most frequently (see Figure 1).
Task-specific dystonias exhibited higher grey matter volume than
non-task specific dystonias [38, 40]. The white matter pathways
connecting implicated brain regions predominantly exhibited
lower fractional anisotropy and higher mean diffusivity.
Although interpretation of the higher grey matter volume
remains unclear, the white matter changes suggest degraded
supporting the idea that
disruptions across multiple structural connections contribute

integrity of those pathways,

to dystonia as a network disorder. The genetic dystonias
tended to have fewer cerebellothalamic tractography fiber
bundles-known as “streamlines” — than the idiopathic dystonias.

Non-task specific dystonias, such as CD and BSP, were found
to have more subcortical alterations, whereas task-specific
dystonias, such as LD and FHD, were shown to affect cortical
structures. In most studies, changes were identified in the
somatotopically organized cortical regions corresponding to
the body regions affected by dystonia. For instance, changes

Dystonia
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were observed in the hand sensorimotor region in FHD [41, 42]
and the face and laryngeal areas in embouchure dystonia [43] and
LD [44], respectively.

VBM

Based on VBM, dystonia exhibits distinct grey matter
morphological networks because those features distinguish
between dystonia and essential tremor and between dystonia
and healthy controls with accuracies of 95% and 89%,
respectively [45]. On the other hand, in a coordinate-based
meta-analysis of 27 VBM studies in dystonia [46], no reliable
grey matter volume differences were found in idiopathic
dystonia. However, the authors point out that if the subtypes
exhibit different volumetric profiles, the inclusion of different
subtypes may have diluted the results. In CD, a multimodal meta-
analysis of 9 studies [47] found differences across many brain
regions, including bilateral precentral and postcentral gyri,
bilateral paracentral lobules, right SMA, bilateral dorsolateral
superior frontal gyri, left middle temporal gyrus, right inferior
parietal gyrus, bilateral median cingulate/paracingulate gyri,
gyrus, right and bilateral
In LD, a of
21 functional and structural neuroimaging studies, including

lingual caudate, thalamus,

cerebellum. similar multimodal analysis
31 experiments in 521 LD patients and 448 healthy controls,
demonstrated abnormalities in the bilateral primary motor
cortices, the left inferior parietal lobule and striatum, the right
insula, and the supplementary motor area [48]. In myoclonus
dystonia, even the primary visual cortex has been implicated with
VBM [49]. Collectively, the large number of regions involved
further reinforces the view of dystonia as a network disorder and
provides evidence for future investigations probing these targets

with new therapies.

dMRI

DMRI changes were observed in the cortico-striato-
pallido-thalamic pathway and the cerebello-thalamocortical
pathway across different forms of dystonia. Among the first
studies conducted with dMRI in LD patients compared to
controls, decreases in white matter integrity were found along
the corticobulbar/corticospinal tracts as well as in the brain
regions directly or indirectly contributing to these tracts (see
Figure 2) [50]. Furthermore, these neuroimaging findings
were uniquely substantiated with postmortem brain
pathology from a patient with LD and three controls that
showed demyelination and degeneration of axonal fibers and
clusters of mineral accumulations in the regions found to be
abnormal on dMRI.

For BSP and CD, changes were observed in the dentato-
rubro-thalamic tract, the brainstem, and the cerebellum [38, 51].
In another study, there were no differences between BSP and CD,
but compared to healthy controls both patient groups exhibited
fiber loss in the white matter tracts connecting GP, putamen, and

thalamus with the primary sensorimotor cortex and SMA [52].
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Patients < Controls

FIGURE 2
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Fractional anisotropy in LD compared to controls. (A) Unbiased whole-brain tract-based spatial statistics (color bar indicates the significance
range at Z > 3.2). (B) a priori ROl analyses from right genu of the internal capsule (Box plots indicate median and upper and lower quartiles. Error bars
indicate the range between the 90th and 10th percentiles. Asterisk indicates significant difference between two groups. R = right; L = left)

Reproduced with permission from [50].

In CD, compared to healthy controls, brain networks exhibited
an overall decrease of network strength and increase of local efficiency
and node associativity based on graph theoretical analysis of dMRI
[53]. Each group was comprised of 30 participants, and the results also
held in reproducibility analyses using the Anatomical Automatic
Labeling atlas. Quantitative anisotropy based on dMRT has also shown
that bilateral tracts between the amygdala and the thalamus have been
correlated with transient anxiety, and that bilateral tracts between the
amygdala and motor, sensorimotor, and parietal association cortical
areas were correlated with more persistent anxious traits [54].
Although there were no differences in TWSTRS and anxiety scales
for those on vs. without anti-anxiety medications, the relative timing
of the anxiety assay and the imaging were not reported.

In FHD, alterations were reported in white matter tracts
connecting the putamen and the dorsal premotor cortex [55],
the primary sensorimotor area [56], and the left medial frontal
gyrus [57]. In embouchure dystonia, abnormalities were found
in tracts connecting the putamen and the primary sensory
cortex, the SMA, and the superior parietal cortex [58], and in
LD, white matter alterations were described in the superior
corona radiata [44].

Differences in structural connectivity based on dMRI were also
explored in relationship to the clinical penetrance in carriers of
DYT1 and DYT6 mutations [59]. Tractographic analysis disclosed
specific changes in the integrity of cerebellothalamocortical (CbTC)
pathways, likely of developmental origin, that regulated penetrance
and variation of motor and non-motor phenotypes in these
individuals [60-62]. Analogous tract changes were also identified
in a knock-in mouse model [63, 64].

Taken together, these studies support the hypothesis that
dystonia is a network disorder involving networks connecting the
striatum, the sensorimotor and fronto-parietal cortices, and the
cerebellum.

Dystonia
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VBM and dMRI heterogeneity

Some results varied between studies and types of dystonia,
raising several questions. What would be common or specific to
each type of dystonia? What would be due to differences in
patient characteristics or imaging protocols that varied between
studies? Direct comparisons between different types of isolated
dystonia reported interesting findings in this regard. Several
studies suggested that the regions affected could differ
between task-specific and non-task-specific dystonias using
VBM [38, 65] or diffusion imaging [66]. For instance, the
the primary
commonly affected in both task-specific (FHD and LD) and
non-task-specific (BSP and CD) dystonia, whereas regions

cerebellum and sensorimotor areas were

responsible for dystonic movements (i.e., writing and
speaking) were specifically affected in task-specific dystonia
[38]. Another study suggested that changes might differ
between dystonia types with increased grey matter volume
being observed in task-specific dystonia (FHD and LD) and
reduced grey matter volume observed in non-task-specific
dystonia (BSP and CD) [67]. Finally, some differences in
brain abnormalities have also been found when stratifying
patients based on their level of training, such as musician’s
dystonia, including musician’s FHD and singer’s LD, vs. non-
musician’s dystonia, including FHD and LD [65, 68].

In inherited dystonias, structural changes were reported as
increased grey matter volume in the right GPi in patients with
DYT1 mutation [69], decreased anisotropy in the motor
subcortical white matter in patients with DYT1 mutation [70],
and reduced cerebello-thalamocortical connectivity in patients
with DYT1 and DYT6 mutations [59]. In patients with PRRT2-
related paroxysmal kinesigenic dyskinesia, which can exhibit
symptoms of dystonia, changes were observed in the basal

ganglia cortical network, with reduced grey matter volume in
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the SMA and right inferior frontal gyrus and reduced mean
diffusivity in the left corticospinal tract [71], along with increased
fiber density in the cerebellar pathway [72].

Another important question is the relationship between
phenotype- and genotype-specific structural alterations. In LD,
phenotype-specific changes were observed in the primary
sensorimotor cortex and the superior corona radiata, whereas
genotype-specific changes were observed in the superior
temporal gyrus, the SMA, and the superior longitudinal
fasciculus [44]. Two studies have suggested that differences in
putaminal volume might represent an endophenotype in
inherited dystonia, with increased putaminal volume in
asymptomatic DYT1 carriers [73] and unaffected relatives of
patients with adult-onset dystonia. The latter had displayed an
abnormal temporal discrimination threshold, potentially
indicating abnormal sensory processing similar to that seen in
their affected relatives [74]. Similarly, putamen volume may be
abnormal in people with isolated idiopathic cranial or hand
dystonia [75]. Changes in the cerebello-thalamic fiber tract
were common to patients with inherited and sporadic
dystonias, whereas changes in the thalamocortical fiber tract
were only observed in non-manifesting carriers or in non-
affected regions of patients with sporadic dystonia [76].

Imaging studies during DBS procedures have also shown the
importance of striatal and cerebellar circuits connected to
cortical sensorimotor areas. DBS electrodes for dystonia
treatment are typically placed in the postero-latero-ventral
sensorimotor GPi [77, 78], a key node of the basal ganglia-
cortical network. Diffusion-based connectivity between the GPi
and the sensorimotor putamen predicted DBS outcomes in CD
and correlated with clinical improvement [79]. Effective contacts
also localized near the dentato-rubro-thalamic tract [80].

Structural imaging features can further classify dystonia
subtypes. Using discriminant analysis, patients with CD and
BSP could be distinguished with 100% and 83% accuracy
from healthy subjects, respectively. Using more advanced deep
learning, patients with LD, CD, and BSP could be distinguished
with 98.8% accuracy based on an automatically identified
pathophysiological neural network biomarker [81].

Limitations of structural imaging

Structural imaging studies in CD [82] and FHD [83]
sometimes  reported
underpowered or used uncorrected statistical thresholds,
subtle effects. These highlight the

importance of studying large groups of patients with robust

negative  findings. Many  were

yielding limitations

statistics, ~ encouraging multicentric and  international
collaborations, especially for inherited rarer forms of dystonia.
Because most studies are cross-sectional, they do not allow for
determining whether the observed structural changes were the
cause or the consequence of the disease, e.g., to dissociate
pathophysiological hallmarks from compensatory mechanisms.

Studies of the effect of treatment in asymptomatic carriers and
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longitudinal studies—and more broadly careful alignment of
study goals and designs [84] - could provide important
information in this regard. The neuropathological correlates of
structural imaging changes are still poorly understood. Whether
they correspond to changes in cell or fiber number, shape, size,
dendritic arborization, or tissue architecture is not known. This
insufficient knowledge highlights the need for 1) the
development of new validated imaging techniques to study in-
vivo microstructural changes related to cellular organization (e.g.,
with diffusion weighted magnetic resonance spectroscopy [85]
and 2) comparative imaging and histological studies in animal

models and post-mortem human tissue.

Summary of structural imaging

Despite these limitations, structural imaging consistently
implicates the cortico-striato-pallido-thalamic pathway and the
cerebello-thalamocortical pathway in dystonia. They also suggest
that not only brain regions involved in these networks but also
connections between them are abnormal [35], in line with the
view of dystonia as a network disorder. The results from
structural imaging also lay the foundation for evaluating the
network physiology that is assayed with functional imaging.

Functional near-infrared
spectroscopy (fNIRS)

Functional near-infrared spectroscopy (fNIRS) measures
the of
deoxygenated hemoglobin in the cortex. FHD patients exhibit

changes in concentrations oxygenated and
task-specific patterns in their oxygenated hemoglobin distinct
from healthy controls [86]: writing increased activation in the
right and left motor cortex and SMA, whereas finger tapping
decreased activation in the left sensorimotor cortex and

bilateral SMA.

Positron emission tomography (PET)

PET measures of metabolism

Before fMRI became widespread, PET already illuminated
dystonia pathophysiology through altered metabolism and
neurotransmission. In 1984, PET revealed basal ganglia
dysfunction contralateral to hemidystonia in a person that had
normal CT and MRI scans [27]. Later PET studies focused on
metabolic brain imaging with 18F-fluorodeoxyglucose (FDG) as
a marker of local synaptic activity [87, 88]. Using spatial
covariance analysis [89], a reproducible dystonia-related
metabolic pattern, termed DytRP, was identified in patients
with genotypic and sporadic forms of the disorder [90, 91].
The DytRP network was
contributions from the putamen, pons, cerebellum, and

characterized by significant

sensorimotor cortex. In addition to being expressed in
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FIGURE 3
Hereditary dystonia-related pattern (H-DytRP). (A) H-DytRP identified in rs-fMRI scans from manifesting (MAN) gene carriers and healthy control

(HC1) subjects. This network was characterized by local contributions from the cerebellum, basal ganglia, thalamus, sensorimotor cortex, and frontal
and parieto-occipital association regions. (B) Left: Expression scores for H-DytRP were elevated in the MAN group compared to the HC1 subjects

used in network identification. Right: Significant increases in network expression were also seen in the non-manifesting (NM) mutation carriers
(Continued)
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and patients with sporadic dystonia (SPOR) compared to HC2 testing subjects. (C) Expression values for the H-DytRP were highly correlated with
corresponding subject scores for a similar sporadic dystonia-related pattern (S-DytRP) identified in an analysis of the SPOR data. (Cer, cerebellum;
Put/GP, putamen/globus pallidus; Thal, thalamus; PostC, postcentral; PreC, precentral; M frontal, middle frontal). T-map thresholded at 4.8 (P <
0.001); color stripe. Error bars represent standard error of the mean. ***P < 0.001; *P < 0.05 relative to HC, corrected for multiple comparisons.

Reproduced with permission from [192].

patients with sporadic dystonia, subject scores for this pattern
were elevated to a similar degree in manifesting (MAN) and non-
manifesting (NM) carriers of DYT1 and DYT6, suggesting that
DytRP expression may, in certain populations, be an
endophenotypic trait. Results from these PET studies served
as the

subsequently evaluated with rs-fMRI (see Figure 3). Networks

foundation for a “Dystonia-related pattern”
involving the cerebellum are also differentially affected by
modulators of the GABAA system: in FTSD, compared to
placebo, Zolpidem induced hypometabolism in the right
cerebellum and hypermetabolism in the left inferior parietal

lobule and left cingulum [92].

PET measures of neurotransmitter systems

Neurotransmitter-specific PET studies have mostly focused
on abnormalities in dopaminergic pathways—especially within
the putamen, which has among the highest density of dopamine
receptors in the brain. PET studies have also identified
GABAergic and possible cholinergic abnormalities. Each of
these neurochemical changes reflects regional contributions to
the broader dystonia network.

PET studies identified functional abnormalities not easily
identifiable by structural imaging, and in multiple cases
implicated the putamen, hinting at possible dopaminergic
dysfunction. The first demonstrated striatal (later identified as
putaminal) alterations in blood flow and oxygen extraction and
metabolism contralateral to the affected side of the body in an
individual with post-traumatic paroxysmal hemidystonia [27].
This individual had normal anatomy as visualized by CT and
MRI. With the methods available at the time, no obvious
abnormalities were found in resting blood flow measures in
people with isolated, idiopathic dystonia. This lack of resting-
state abnormality led to a second series of observations reporting
abnormalities in vibration-induced blood flow responses in
sensorimotor cortex and SMA in those with unilateral,
isolated, idiopathic dystonia [20] unilateral writer’s cramp [93]
and cranial dystonia [94]. Interestingly these abnormalities were
not only contralateral to the affected side in the limb dystonias
but also in the ipsilateral side of the brain. A hint that these
findings related to striatal dysfunction came from a study
showing the same reduced vibration-induced blood flow that
normalized after oral levodopa in participants with dopa-
responsive dystonia [19]. Yet, these indirect measures did not
directly prove dopaminergic dysfunction.

Direct PET measures of dopaminergic radioligands did
demonstrate abnormalities in striatal dopaminergic systems.
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First, patients with idiopathic, isolated cranial and hand
dystonia had reduced striatal binding of a D2-like radioligand
([18F]spiperone) [10] that matched the transient reduction
found in an animal model of transient dystonia induced by
internal carotid infusion of the selective dopaminergic
neurotoxin MPTP [10, 95]. These abnormalities were later
determined to be somatotopically organized in the putamen
based upon the part of the body affected by dystonia [96].
Subsequent studies confirmed these D2-like changes with a
more specific radioligand, [11C]raclopride, in manifesting or
nonmanifesting carriers of mutations in DYT1 or DYT6 dystonia
[90, 97] as well as in those with idiopathic, isolated FHD or LD
[98, 99]. These latter two studies also took advantage of [11C]
raclopride, which is displaced by the release of endogenous
the related

abnormal phasic striatal release of dopamine in response to

dopamine, to demonstrate somatotopically
symptomatic and asymptomatic motor tasks. However, [18F]
spiperone has specific binding to all D2-like receptors, including
D2, D3, and D4 dopamine receptors. In contrast, [18F]N-
200-fold  greater

D2 receptors compared to D3 or D4, and the application of

methylbenperidol has a affinity  to
[18F]N-methylbenperidol did not reveal any striatal differences
in D2 receptor binding in a cohort of patients with idiopathic,
isolated FHD and cranial dystonia suggesting the previously
found D2-like abnormalities may be mediated by D3-specific
receptors [100]. An earlier study using [11C]JNNC-112, a D1-like
selective radioligand also did not find striatal differences in a
mixed cohort of patients with isolated hand, cranial, and cervical
dystonia [101], whereas using a higher resolution scanner in
better-stratified patient cohorts permitted identification of
somatotopically related abnormalities in isolated FHD and LD
patients [102]. Taken together, these striatal dopaminergic
abnormalities were thought to represent dysfunction of the
D2-mediated indirect pathway that is important for surround
inhibition of unwanted movements during selected motor
activity [19], while abnormalities in the DI-mediated direct
pathway could reflect excessive action of the pathway
important for selective motor activation [102].

Several other studies focused on GABAA receptors using the
radioligand [11C]flumazenil. One early study with a small
number of participants with either DYT1 dystonia or isolated,
idiopathic dystonia found reductions in sensorimotor cortex
[103]. In contrast, a larger study focusing solely on isolated,
idiopathic CD found higher uptake in the right precentral gyrus
and left parahippocampal gyrus and no regions with significant
reductions. cerebellar

Interestingly, decreased uptake in
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hemispheres correlated with severity, whereas decreased vermis
uptake correlated with disease duration [104]. Higher [11C]
flumazenil uptake also occurred in those with idiopathic,
isolated FHD in the inferior frontal gyrus but decreased in the
cerebellar vermis [105]. Together, these findings implicate
abnormalities of cerebellar GABAA and suggest abnormalities
in various cortical regions that would fit with dysfunction of
cortical inhibition.

Initial studies of cholinergic function using a vesicular
acetylcholinergic transport radioligand [106] indicate that
posterior putamen may have lower uptake but that this may
only occur in younger patients with DYT1 dystonia, while a
reduction in cerebellar vermis does not depend upon age [107].
Given the functionally significant role of ACh in the striatum
[108], and in particular how it modulates thalamostriatal
transmission [109] and the D1- and D2-mediated pathways,
PET imaging with ligands for the cholinergic system merit
further investigation.

What does all of this mean, and how does it advance our
understanding of network mechanisms underlying dystonia?
It is likely that selective transmitter abnormalities occur in
various forms of dystonia, and commonalities exist across the
different forms. Such common findings include dysfunction
of striatal dopaminergic systems in isolated focal, idiopathic
dystonias, as well as DYT1 and DYT6 dystonias [10, 90,
95-97]. Yet, some abnormalities may be somatotopically
organized, reflecting the affected body parts [98, 99, 102].
The dopamine-dependent changes in striatum are consistent
with a large body of evidence pointing to a role for dopamine
in mediating abnormal synaptic plasticity that could play a
role in motor reinforcement learning and the corresponding
development of abnormal functional circuits involving the
[110, 111]. The
abnormalities also led to the notion of hypofunctional

striatum striatal dopamine system
indirect and hyperfunctional direct basal ganglia pathways
[102] with subsequent reduction of cortical inhibition
consistent with abnormalities of vibration-induced blood
flow responses in idiopathic, isolated dystonia [20, 93, 94]
and physiologic observations of reduced cortical inhibition
[112]. These data on reduced inhibition are consistent with
abnormalities of GABAA receptors in a network that
[103-105]. Although the
systems to be

determined, this complex network interplay likely involves

mediates cortical inhibition

precise role of cholinergic remains
brainstem nuclei, dysregulated thalamostriatal transmission,
and a cascade of changes in the D1-mediated direct and D2-
mediated indirect pathways through the basal ganglia. Of
course, data about cerebellar dysfunction fits well with the
increasing understanding of the anatomic and functional
relationships  between basal ganglia networks and
cerebellum [113, 114], including potential relationships
between the cholinergic cerebellar vermis with basal

ganglia and cortical regions [115, 116].
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Most importantly, multimodal studies that combine

neuroimaging of transmitter systems with physiologic
measures or resting-state functional connectivity will help take
these investigations to the next level. For example, the specific
putaminal location of a D1 receptor abnormality found with PET
[102] was used as a seed for a resting-state functional connectivity
study that facilitated identification of specific dysfunctional
small-scale networks in people with idiopathic, isolated focal
dystonias, whereas rigorous quality control measures eliminated
the statistical significance of apparent large-scale, global network
abnormalities [117]. Thus, advances in understanding the
underlying network dysfunction related to various forms of
dystonia will be facilitated by studies that combine various
modalities, such as different imaging techniques and other

physiologic measures.

Functional MRI (fMRI)

Functional MRI has yielded important insights into dystonia
pathophysiology. It enables simultaneous assessment of distant
structures at rest (rs-fMRI) or during tasks, though practical
constraints can limit participation for severe generalized
Most
demonstrate impaired brain-network properties.

dystonia. studies focus on focal dystonia and

Resting-state fMRI (rs-fMRI)

Intrinsic functional features of brain connections at rest
reveal task-free properties of brain networks without the
online confound of behavioral performance that may differ
between populations. Compared to neurologically normal
controls, patients with focal [65, 118-121] and generalized
dystonias [122] show either reduced or excessive inter-
regional correlations. Because these correlations depend on
rs-fMRI
abnormalities likely overlap with diffusion-MRI findings.

A meta-review of 46 dystonia rs-fMRI studies [123] most
often implicated the sensorimotor cortex, SMA, putamen,

underlying ~ white-matter  architecture, some

parietal cortex, thalamus, and cerebellum, with connectivity
changes primarily in the sensorimotor network [123]. Mixed
directions of effect likely reflect differences in analytic choices,
quality control, and cohort. While common dysfunctions may be
part of a general hallmark of dystonia, dysconnectivity patterns in
particular networks vary among the different forms of dystonia.

In CD in particular, a meta-analysis of 17 studies using
anisotropic effect size-based signed differential mapping (AES-
SDM) identified abnormalities in many regions, including
bilateral precentral and postcentral gyri, bilateral paracentral
lobules, right SMA, bilateral median cingulate/paracingulate
gyri, right caudate nucleus and thalamus, right cerebellum and
lingual gyrus, right fusiform gyrus, and bilateral precuneus [47].
Sensory network dysfunction at rest encompasses cross-modal
sensory areas [124]. Sensorimotor connectivity differs by sensory
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trick—decreased in patients with a trick and increased in patients
without a trick [125]. Perhaps relatedly, connectivity between
cortex and cerebellum decreased proportional to BoNT efficacy
[126]. Furthermore, compared to healthy controls, the lower
range of motion and compromised movement quality during a
head “reaching task” seen in CD correlate with decreased
functional connectivity among SMA, occipital cortex, and
cerebellar regions [127]. In CD patients with GPi-DBS,
optimal stimulator settings (compared to non-optimal and
stimulator off) reduced activity in sensorimotor cortex in
proportion to long-term clinical improvement, and a similar
trend appeared in a few cases of generalized dystonia [123, 128].

In BSP, rs-fMRI links spasm intensity to cerebellar and
sensorimotor cortical activation, and spasm onset to
involvement of the basal ganglia and frontal eye field portion
of the superior frontal gyrus [129].

In FHD, rs-fMRI shows distorted digit representation in the
somatosensory cortex [130]. It also reveals dysfunctional cortico-
subcortical circuits involving somatosensory cortex, primary and
secondary motor areas, cerebellum, and basal ganglia [120, 121,
131]. Similarly in musician’s dystonia involving the hand, when
compared to healthy musicians, resting state connectivity is
reduced within the basal ganglia network [132] but increased
in the basal ganglia associative loops with the dorsolateral
prefrontal cortex and the premotor cortex [133].

In LD, rs-fMRI

connectivity within sensorimotor and frontoparietal networks

demonstrated abnormal functional
compared to healthy individuals as well as phenotype- and
genotype-distinct  alterations of these networks, involving
primary somatosensory, premotor, and parietal cortices [58,
118]. Battistella et al. [118] was also the first to apply a
machine learning algorithm (linear discriminant analysis) to
brain imaging data to show the feasibility of this approach for
classifying LD patients as distinct from healthy controls with a
71% accuracy based on their differences in the connectivity
measures in the left inferior parietal and sensorimotor
cortices. When categorizing between different forms of LD,
the combination of measures from the left inferior parietal,
premotor, and right sensorimotor cortices achieved 81%
discriminatory power between familial and sporadic cases,
whereas the combination of measures from the right superior
parietal, primary somatosensory, and premotor cortices led to
71% accuracy in the classification of adductor vs. abductor forms
of LD. Although risk factors for LD remain unclear, in a study
using precise demographic and clinical characterization in a large
cohort of patients, environmental factors influencing sensory
feedback processing explain neural alterations in the parietal,
insular, and sensorimotor cortical regions [134].

In a single study involving multiple forms of focal dystonia,
dysfunction of sensorimotor cortex and prefrontal division of the
thalamus represented a common hallmark of task-specific focal
dystonia [68]. A recurrent finding in resting-state studies is the
abnormal connectivity between parietal and premotor cortices in
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different forms of focal dystonia [65, 68, 118, 119, 135-141] and
in generalized dystonia [122].

Some forms of genetic dystonia show dysfunction of
cerebello-cortical and cerebello-striatal loops [72, 107]. The
abnormal outputs from cerebellar cortex to deep cerebellar
nuclei would in turn increase the drive of deep cerebellar
nuclei to the thalamus, a mechanism that likely plays a critical
role in the pathophysiology of dystonia [35]. For instance, in
PRRT?2 patients, abnormal cerebellar drive toward the thalamic
relays of the striatum and motor cortex was partly normalized
after cerebellar non-invasive stimulation compared to placebo
[72]. In addition, in DYT1 patients, increase of brainstem-striatal
functional connectivity was associated with the binding potential
of cholinergic ligand in the striatum [107]: higher functional
connectivity was associated with lower expressions of
acetylcholine vesicular transporter. This suggests concomitant
and interdependent functional impairments of cerebellar and
striatal nodes.

Another key factor is the role of quality control for analysis of
these resting state studies, as less rigor can lead to many
statistically significant, yet spurious findings [117]. This is
particularly important for interpretation of meta-analyses of
numerous studies each of which may not apply such rigor
consistently.

Task-related fMRI: motor dysfunction
Considering motor tasks, network dysfunction is present at
all stages of motor control, ie., motor planning, motor
preparation, and motor execution. During task periods
preceding movement onset or the imagination of hand
movements, FHD patients have impaired cortical and basal
ganglia activation [142, 143] that sometimes extends to the
cerebellum [142]. Abnormal motor planning was often related
to task-related dysfunction of parietal and lateral premotor areas
during imagined movement [144, 145] and during the execution
of right (symptomatic) handwriting compared to other tasks
(tapping, zigzagging) performed with different limbs (left hand,
right foot) [146]. In particular, an increase in practice-related
activity in the premotor cortex, later associated with motor
consolidation, suggests the formation of abnormal motor
engrams [55]. During motor execution, hyperactivity in
primary somatosensory and motor cortices were generally
observed in different forms of focal dystonia [147-151], and
in myoclonus dystonia [152]. For CD, BSP, and LD, task-related
dysfunctions were demonstrated in cortical, cerebellum and/or
basal ganglia activation during non-symptomatic tasks [82, 148,
153-156]. In the context of LD, when ADSD patients were
compared to controls, cerebellar activation was reduced
during symptomatic phonation and modified during the
asymptomatic tasks [148, 157]. Network regions involved in
different forms of dystonia for symptomatic [144, 146] and
non-symptomatic [156, 158, 159] tasks may indicate that
motor commands are elaborated and executed through a
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FIGURE 4

Networks showing functional alterations correlated with structural impairments in dystonia. (A) Compared to controls, DYT1 patients show
decreased resting state functional connectivity in striatal, cerebellar, and cortical networks. Large-scale network involving the cholinergic system is
altered in some genetic forms of dystonia. Asterisk (*) indicates that mecencephalo-striatal connectivity correlates with deficient binding of ACh PET-
ligand in the putamen. (MPM, motor premotor; ACC, anterior cingulate cortex; SPC, superior parietal cortex). Adapted from [108]. (B) WC
patients showed task-specific decrease of activation and directed connectivity between the inferior parietal cortex (IPC) and the ventral premotor
cortex (PMv) during right hand writing. This was accompanied with decrease of grey matter volume in the M1 hand area and in the task specific PMv.
PMv appears as an important hub in task-specific dystonia, linking structural with functional deficits and clinical characteristics of focal hand dystonia.
Adapted from [151].
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the
pathophysiology of dystonia (see Figure 4). A recent study

common pathway that contributes importantly to

showed abnormal involvement of cognitive and visual
networks during rest periods interleaved with task execution
[159]. Task-related connectivity studies showed that patients
with focal dystonia have changes in the strength of cortico-
cortical motor and cortico-basal ganglia connections, and
abnormal cerebello-thalamocortical connections [55, 140, 160].
Task-related connectivity in dystonic hand tremor showed
specific involvement of associative cortical, cerebellar and
striatal regions [161].

Beyond parieto-premotor cortices and cerebellar regions,
larger studies of focal dystonia patients (n>= 30) showed
altered connectivity in broader networks encompassing insular
[162, 163] and prefrontal areas [164] extending the dysfunctional
network to cognitive-limbic associative areas. For instance, these
findings were observed during reward learning with increased
activation in the anterior cingulate cortex [165]. They were also
observed when resting-state connectivity was associated with
offline task performance, as abnormal communication between
cerebellum and pre-SMA correlated with impaired agency (the
loss of perception of control over one’s action) during a
visuomotor task [166].

Task-related fMRI: sensory dysfunction

Several paradigms allow for investigating task-related
sensory dysfunction, including sensory stimulation of a body
part, passive movements, and discrimination in time or space
between two sensory stimuli. Patients with isolated dystonia
affecting a specific body part showed an abnormal
representation of the symptomatic limb in the somatosensory
cortex, with excessive overlap of cortical representation of digits
for writer’s cramp [130] and of mouth for embouchure dystonia
[167], as well as abnormal activation of lips, face, or digit areas
during sensory stimulation [168, 169]. Sensory stimulation also
engaged dysfunction of the primary sensory cortex unrelated to
the affected limb [170, 171] and other brain areas, including GPi
[172], striatum and cerebellum [61, 173, 174]. Dysfunction of the
putamen was often observed in different forms of dystonia
during tasks involving perceptual judgements [175-177], with
dysfunction that extended to the superior colliculus in CD [171]
and insular cortex in FHD [176]. In LD, abnormal temporal
discrimination was associated with dysfunction in the middle
frontal and primary somatosensory cortices, while cerebellar and
striatal dysfunctions were form (sporadic/familial)- or symptom-
specific [178]. However, contrary to altered visual temporal
discrimination, auditory temporal discrimination and olfactory
function have not been found to be statistically altered in LD
patients, suggesting that these are likely not candidate
endophenotypic markers of LD [179].

Obviously, sensory processing is often coupled with motor
output. In daily life, perception and action are part of an

interactive cycle, as we perceive the results of our action
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through our senses, and sensory feedback are used to initiate
or correct our movements. In task-specific FHD, conditions
during which somatosensory and proprioceptive information
is used to further plan the movement, elicited impaired
activation of primary sensorimotor cortices, as well as
posterior parietal and premotor areas [169]. This importantly
suggests that parieto-premotor dysfunction is also present during
the delay when patients had to use somatosensory information
for motor planning.

Nodal weighting

Because dystonia appears to involve larger networks than
originally thought, investigating the relative weight of individual
regions (nodes) in the functional and structural networks can
provide a better understanding of the network’s complex
disorganization. Moreover, focusing on pathological models
with dysfunction in a particular node could help answer the
question of the node’s contribution within the network. In this
line of reasoning, a study considered two genetically modified
mouse models of DYT1 dystonia, the first had conditional knock-
in (KI) in neurons that express dopamine-2 receptors (D2-KI),
while model 2 had conditional KI in Purkinje cells of the
cerebellum (Pcp2-KI) [180]. The results suggest that, in
DYTI, dopaminergic D2 neurons have detrimental effect on
sensory functions and functional connectivity, whereas the
cerebellum functional role within the sensorimotor network
deficits. Cerebellar
involvement in FHD depends on the complexity of symptoms,

protects against dystonia-like motor
also suggesting a compensatory role of the cerebellum [160].
Along the same line of reasoning, a rare form of dystonia with
ADCY5 mutation presents a primary dysfunction within the
the [181]. The

ADCY5 pathological model provides the unique opportunity

striatum  but not in cerebellum
to test how a primary striatal dysfunction affects cerebellar
activity, which we expect could compensate for striatal
dysfunction. However, in the most common forms of
dystonia, whether cerebellar abnormalities are primary or
secondary to striatal dysfunction remains unclear. In a study
involving patients with PRRT2 mutation, which induces dystonia
among other hyperkinetic symptoms [182], aberrant cerebellar
output can drive striatal dysfunction [72]. In some cases, the
the

sensorimotor network such as in dystonic tremor [183], or in

cerebellum can have detrimental influence within
myoclonus dystonia (DYT11) [166, 184]. Despite its systematic
involvement in multiple forms of dystonia, the cerebellum likely
has different functional weights within the sensorimotor

network, depending on environmental and genetic factors.

Network analytics

Eidelberg et al. developed a method to map disease networks
in rs-fMRI data based on independent component analysis (ICA)
[185, 186]. Applying this approach to scans from clinically
manifesting (MAN) dystonia mutation carriers and healthy
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control subjects, an rs-fMRI-based DytRP was identified
(Figure 3A) with topographic features similar to its earlier
PET counterpart [187]. As with the PET-based DytRP,
expression of the rs-fMRI network was elevated in NM
mutation carriers and in patients with sporadic dystonia
(Figure 3B) and correlated with clinical dystonia ratings
measured in affected individuals. This network mapping
approach also allowed for detailed analysis of the functional
connections linking DytRP nodes, as had been undertaken
previously in Parkinson’s disease [188, 189]. Genotypic and
sporadic dystonias were both characterized by positive
correlations between CbTC and pontine DytRP regions,
suggesting distinct facilitatory nodal interactions in these
groups. This contrasted with the negative correlations between
CbTC nodes that were present in healthy subjects. Of note,
increases in cortico-striatal or cortico-cortical connectivity
were more pronounced in patients with genotypic forms of
the disorder.

Recent studies of disease network architecture using graph
metrics such as degree centrality, clustering, path length, and
small worldness [187-190] identified differences in the patterns
of functional connectivity in dystonia mutation carriers with and
without motor manifestations. The data overall show how
network mapping and graph theoretic methods can provide
novel insights into the circuit abnormalities that underlie
isolated dystonia. Other methods consider the inter-dependent
involvement of cortical and cerebellar nodes, given the degree of
convergence between cortical inputs on cerebellar nodes [191].
Such methods could bring more insight into the functional roles
of the cerebello-cortical subdivisions in the pathophysiology
of dystonia.

Summary of fMRI

The conclusions drawn from these resting-state and task-
related studies converge towards 1) common networks that are
affected in most forms of dystonia involve sensory cortices,
striatum, and cerebellum; 2) cortico-cortical projections
associated with abnormal representation of fine motor skills,
i.e., parieto-premotor connections; and 3) network dysfunction
extending to include cognitive-limbic associative nodes. Whether
certain nodes have deleterious or beneficial contribution to
behavioral output or clinical symptoms should be probed
using specific pathological models and/or neuromodulation

strategies [72] used in conjunction with fMRI.

Electroencephalography (EEG)

Although used in only a few studies of dystonia, EEG is one
of the oldest non-invasive measures of brain function [4, 192]
and allows comparisons of activity between groups at rest and
during tasks. While scalp recordings generally reflect underlying
cortical activity, source-modeling techniques enable deeper
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localization. EEG signals can be decomposed into frequency
bands since different frequencies reflect different brain
processes. Thus, it is possible to get frequency information
over time from various brain locations, largely limited to the
cortex. Correlations between pairs of EEG channels can indicate
communication between regions or indicate that both are jointly
influenced from a third source. Correlations are referred to as
functional connectivity. Using more sophisticated algorithms, it
is possible to identify the causal influence of one region on
another-this is called effective connectivity. The analysis of all (or
many of) the possible connections in one model is called graph
theory, and this gives a more systemic picture of the
brain network.

Most of the studies applying EEG to dystonia have been done
in FHD. Somatosensory evoked potential studies show distorted
digit representation in the somatosensory cortex [130, 193]. FHD
patients also exhibit task-specific patterns in their EEG distinct
from healthy controls [86]. Abnormal shape and amplitude of
readiness potential were observed during motor preparation
[194]. In the bilateral sensorimotor cortex, writing elicits
increased low gamma power and less mu-beta and beta
attenuation. There is also reduced connectivity between the
SMA and the left sensorimotor cortex. During finger-tapping,
patients failed to attenuate the mu-alpha, mu-beta, and beta
power, and there were no changes in connectivity.

Brain connectivity in FHD compared with healthy controls
was studied with 58-channel EEG using a technique called
mutual information analysis [195]. Studies were done at rest
and during a simple finger tapping task that did not produce
dystonia. Mutual information is a measure of linear and non-
linear coupling and was computed in alpha, beta, and gamma
frequency bands. Most of the interest was linear and in the beta
band. The task produced increased mutual information in both
groups. However, mutual information was decreased in the
patients at both rest and in action (see Figure 5). The data
from healthy volunteers were then analyzed with graph theory
using a measure of efficiency [196]. Efficiency during the finger
tapping was increased selectively in the beta band, and regional
efficiency was most increased in bilateral primary motor and left
sensory area. A similar analysis was done in the FHD patients
with different results [197]. While the beta network was efficient
at rest, the efficiency decreased with the motor task (see Figure 6).
Evaluating the regional efficiency, there was an increase over the
SMA, but it decreased with the motor task. Collectively, the
findings indicate an abnormal network at rest, greater disruption
with a motor task, and motor area inefficiencies.

Several subsequent similar studies in FHD all used different
methods. One study employed an isometric movement that did
not induce dystonia, utilized magnetoencephalogram (MEG),
and focused specifically on coherence between sources at M1 and
S1 [198]. Coherence in different frequencies was similar at rest
and was reduced only during movement in patients and only in
the gamma band. A second study, again using non-symptomatic
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FIGURE 5

EEG beta band functional connectivity in healthy volunteers in rest (a) and task (b) conditions and in FHD patients in rest (c) and task (d)
conditions. Corresponding task-related changes in healthy volunteers (e) and FHD patients (f), with solid lines indicating increased connectivity
during a task and dotted lines indicating decreased connectivity during a task. Six bold nodes are channels of interest. Reproduced with permission

from [200].
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FIGURE 6

Normalized spatial distributions of Enodal, a measure of global communication efficiency in beta band at each node, viewed from the left, top,
and right aspects. Labelled channels exhibit significantly different Enodal, at a cost of 0.28 corresponding to the maximal interaction in Eglob
differences. Main group effect found at FCz, corresponding to the SMA. Reproduced with permission from [202].

FCz

movements, used effective connectivity of EEG and machine
learning [199]. The most sensitive difference between patients
and heathy volunteers was a decrease in beta effective
contralateral

connectivity during movement from the
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premotor area to other nodes. A third study using EEG
coherence looked at writing, sharpening a pencil (a task that
did not induce dystonia), and imagination of those same two
tasks [200]. The only abnormality identified was a reduction of
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interhemispheric alpha coherence between the two motor areas
and only during actual handwriting. A fourth additional study
used EEG transfer entropy at rest and during writing to evaluate
effective connectivity [201]. They used graph analysis metrics
and found reduced nodes in the beta frequency during writing.
When investigating imaginary coherence during the processing
of somatosensory information used to plan sequential finger
movements, communication between parietal and frontal
electrodes was decreased at mu and beta frequencies in
writer’s cramp compared to healthy controls [169].

In LD, symptomatic speaking was compared to two
asymptomatic tasks-whispering and writing-using high-
density EEG [202]. Speaking produced increased gamma
synchronization in middle/superior frontal gyri, primary
somatosensory cortex, and superior parietal lobule, with
disrupted  prefrontal-parietal coupling. Writing showed
decreased beta synchronization, most prominently in right
superior frontal gyrus; whispering was normal.

Despite methodological differences, results converge: focal
dystonia shows sensorimotor-network disconnection—stronger
than

prefrontal-parietal links, with abnormalities variably in alpha,

during  movement rest—primarily affecting
beta, or gamma bands. EEG/MEG therefore provide valuable
spatiotemporal insight; combined with DBS they can probe
cortical-subcortical ~ coupling, and improved montages/
analytics may enable deeper source localization and open new
horizons for investigating cerebello-cortical electrophysiological

signals [203].

Deep brain stimulation (DBS)

For some types of dystonia—especially including but not
the
revolutionary treatment. DBS also enables direct probing of

limited to generalized forms-DBS has been a
dystonia networks. First, DBS activation, combined with
imaging, can point to associated network changes. Effective
DBS for dystonia—usually in the GPi-is associated with
increased metabolism not only at the stimulation site but also
in related network nodes of STN, putamen, and primary
[204]. GPi

functional coupling patterns in the basal ganglia, thalamus,

sensorimotor cortices DBS also normalizes
and brainstem [205]. Although less commonly used in
that STN and

thalamic motor targets can show subtype-specific efficacy for

dystonia, preliminary evidence suggests
BSP, CD, and appendicular forms of dystonia [206].

Second, DBS in unconventional targets can provide
additional the

implicated in dystonia. DBS in the field of Forel in a small

evidence about regions and networks
series of otherwise refractory dystonia cases, including one each
of lingual, cranio-cervico-axial, and hemidystonia, implicates the
pallidothalamic tracts, i.e., the primary GPi output to thalamic

nuclei [207]. Likewise, the pedunculopontine nucleus (PPN) has
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been implicated in dystonia [208] and although not usually a DBS
target for isolated dystonia, DBS in PPN can decrease the axial
dystonia evident in Parkinson’s disease [209].

Third, and perhaps more significantly, the implantation of
DBS electrodes for the treatment of dystonia provides an
otherwise rare opportunity to understand network
abnormalities through invasive brain recording in humans.
Invasive human brain recording is evolving in several ways.
based brief

intraoperatively or via leads externalized temporarily. The new

Earlier work was on recordings done
availability of commercial DBS devices that provide brain sensing
as well as stimulation, allows a shift to a chronic recording
paradigm [210]. Paired with wearable monitors of motor
function, chronic brain recording is ideal for a deeper
understanding of personalized neural signatures of specific
motor signs. The field of invasive recordings is also
transitioning from single site recording (basal ganglia only) to
multisite recordings, which can include other subcortical regions
as well as sensory and motor cortex through insertion of
electrocortigraphy leads through the same surgical exposure as

the DBS leads.

DBS electrode localization and
diffusion MRI

Co-registering DBS electrode locations to a standard
stereotactic space can be a powerful method to explore several
key questions [211]. First, signatures from electrophysiological
recordings can be mapped to anatomical space. Elevated local
field potential activity in the theta band recorded from GPi-DBS
electrodes correlates with symptom severity in CD [212] and this
localizes to the posterolateral GPi.

Although much of the data are from rodent and non-
human primate models, evidence including recordings
from DBS patients suggests multiple changes in GPi
neuronal physiology: lower firing rates, firing patterns
that are less tonic and more irregular and bursty,
increased oscillatory power in delta (1-3 Hz) and theta
(3-8 Hz) ranges, and broadened somatosensory receptive
fields, especially for symptomatic body regions (as reviewed
in a proposed box-and-arrow network model of dystonia
pathophysiology [213]).

Second, electrode localizations could help identify an optimal
stimulation site (“sweet spot”). A multi-center study of
87 patients linked best outcomes to stimulation sites in the
posterolateral GPi and, more precisely, its ventral border
[214]. While considering this location as an optimal spot, the
distribution of optimal contacts across this large cohort varied
widely, and

suggesting subtype, pathology,

symptom expression were important predictors of optimal

somatotopic

DBS response. In other words, there may not be one optimal
DBS target for all patients with dystonia.
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Sweet streamline models in the context of bilateral STN DBS implants. (a) Sweet streamlines (n = 56; peak R = 0.36) associated with beneficial
stimulation outcomes were filtered from a population-based group connectome. The top row demonstrates the set of connections (in white)
seeding from stimulation volumes across patients. Among these plain connections, only those were isolated via DBS Fiber Filtering (middle row)
whose modulation was Spearman's rank correlated with clinical outcomes (bottom row). Sweet streamlines are displayed in thresholded and
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binarized fashion. Results are shown against a sagittal slice (x = =5 mm) of the 7T MRI ex vivo 100-pm human brain template, in conjunction with

a three-dimensional model of the right STN in template space from the DISTAL atlas, version 1.1. (b) In-sample correlations and 5-fold cross
validations are reported for models informed on normative connectomes. Plots in the top row represent the fitting of a linear model to determine the
degree to which the overlap of E-field magnitudes with selected HCP 985 Connectome sweet streamlines explains variance in empirical clinical
outcome across the cohort, as calculated using Spearman'’s correlation (two-sided tests). The magnitude of E-field overlap with sweet streamline
models in this analysis is expressed as weighted peak 5% of Fiber R scores under each E-field, averaged across bilateral scores per patient. Gray shaded
areas indicate 95% confidence intervals. Reproduced with permission from [5].

Third, electrode localizations could also link treatment
outcomes to distributed brain networks. In the past and in
other diseases, tractography derived from dMRI has been used
to associate DBS stimulation sites with structural brain networks
[215-219]. However, tractography in the pallidal region is
problematic because of its proximity to the internal capsule.
Cortical input to the pallidum is known to traverse mainly
through the striatopallidofugal bundle [220]. However, when
seeding connections from the pallidum using dMRI based
tractography, many results include the internal capsule as a
false positive connection [221]. A potential solution to this
problem was introduced by a basal ganglia atlas that had not
been constructed based on tractography but on expert
[222]. Pathways included in this
resource should be free from false-positive connections, and

anatomical knowledge

all included tracts will match our current anatomical knowledge.

This detailed atlas was applied to DBS electrode localizations
in 80 patients from five institutions to study networks associated
with optimal response in cervical and generalized dystonia [223].
While this study confirmed that optimal stimulation sites
mapped to the posterolateral somatomotor region of the GPj,
it provided evidence for differential treatment mechanisms in
cervical vs. generalized dystonia. Namely, response in CD
mapped to pallidofugal fibers that projected radially into the
internal capsule, along the main axis of the basal ganglia, such as
the comb system of Edinger [224]. In contrast, optimal response
in generalized dystonia mapped to pallidothalamic bundles such
as the ansa and lenticular fasciculi. While projections of both
systems are known to reunite in the thalamus, the finding could
motivate differences in networks associated with cervical and
generalized forms of dystonia. This overall approach of using
DBS treatment outcomes to make inferences about networks
implicated in dystonia has also been extended to STN-DBS (see
Figure 7) [5]. Recently, a larger study was carried out to elucidate
optimal stimulation sites and networks in subthalamic DBS for
dystonia [206]. While axial forms of dystonia (such as cervical
and truncal phenotypes) were best treated by directing the
electrical field to the ventral oral posterior nucleus of the
thalamus (and cerebellothalamic circuitries), appendicular
forms were best treated when stimulating the subthalamic
nucleus proper (and basal ganglia circuitries).

In sum, these three examples show the unique potential and
insights gained from studies that combine precise DBS electrode
reconstructions with tractography from dMRI and can compare
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electrophysiology, clinical effects and involved networks on a
group level [225].

Simultaneous recordings in GPi and
thalamus in pediatric movement disorders

Dystonia is a prominent symptom of many pediatric
movement disorders. To refine DBS targeting in pediatric
movement disorders with heterogeneous distributions of CNS
pathology, a protocol was developed using temporary depth
electrodes at multiple candidate sites. Recording and test
stimulation are performed over 5 days in a neuromodulation
monitoring unit (NMU) with the child awake and able to
participate in usual daily activities [226]. Subsequently, a total
of four permanent DBS leads are implanted, usually in a
combination of pallidal and thalamic targets [226]. This
procedure raised the success rate in children with secondary
dystonia from 50% to greater than 90%, and it expands the
potentially effective targets. Diagnoses include secondary
dystonia, primary dystonia, and Tourette syndrome. Only one
of the 33 children did not proceed to permanent electrode
implantation due to lack of an effective target [227].

These recordings yield new insight into DBS mechanisms for
dystonia and related movement disorders. Stimulation-evoked
potentials captured simultaneously across depth electrodes at
multiple DBS frequencies reveal inter-regional connectivity and
the spatiotemporal spread of stimulation. Comparison of
correlations in spontaneous brain activity with the evoked
potential shapes suggests that the DBS signal propagates at
least partly along physiological pathways, enabling frequency-
dependent maps of orthodromic and antidromic propagation
useful for parameter selection.

Clinical results up to 5 years after implantation in children
with secondary dystonia suggest that stimulation in the optimal
thalamic target can almost completely alleviate the hyperkinetic
component dystonia, whereas stimulation in the optimal target in
GPi only partly alleviates the hypertonic component. This
observation suggests that the mechanism of the hyperkinetic
and hypertonic components may be different, and support
symptom-specific target selection in pediatric cases.

Unexpectedly, both GPi and thalamic regions are relatively
quiet at rest and increase their activity with attempts at voluntary
movement [226, 227]- opposite the typically high resting GPi
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activity in Parkinson’s disease and in healthy non-human
primates. Because GPi outputs inhibit thalamic targets, an
excitatory drive to thalamic targets has been suggested, most
likely arising from cortical glutamatergic efferent pathways back
to thalamus. This supports a model in which the basal ganglia
normally modulate and select activity in thalamocortical loops,
and decreased firing in GPi leads to failure of modulation and
selectivity. This could provide an explanation for both hypertonia
due to excessive drive to motor cortices, as well as hyperkinetic
movements due to failure of inhibition of unwanted
thalamocortical dynamics. Further studies are needed to
determine the mechanism by which stimulation in GPi or
thalamus can selectively ameliorate these different components
of dystonia.

The specific network functions of thalamic relays between
cerebellum and striatum [228, 229], and indeed even different
thalamic motor nuclei (i.e., Voa/Vop and VIM), still need to be
elucidated and may play an important role in dystonia. In two
adolescents with dystonia secondary to cerebral palsy, compared
to a Tourette patient without dystonia, there was a drawing task-
related increase in magnitude of activity in the GPi and Vim
nucleus of the thalamus [230]. There was no such difference in
other thalamic nuclei. Because GPi and Vim are the primary
nodes in BG and cerebellar output pathways, respectively, it
implicates both pathways in the altered motor control evident in
this form of dystonia. A follow-on study supported the higher
activity in the GPi, as well as stronger coupling from STN to GPi
than from GPi to STN [231].

In pediatric dystonia, benzodiazepines reduce BG and
thalamus activity and the efficacy of transmission between
them [232], so future studies also need to carefully control for
the influence of oral medications.

Oscillopathies

The theoretical foundation for network models of movement
disorders-including Parkinson’s disease as well as dystonia—now
incorporates an “oscillatory synchronization” framework, the
idea that abnormal synchronization of neuronal populations
underlies specific signs and symptoms across brain disorders.
One emerging concept is that the extent to which DBS attenuates
pathological synchrony serves as a key biomarker of therapeutic
efficacy [23, 233-235]. This principle, established in modeling
motor fluctuations in Parkinson’s disease [236], is now being
applied to dystonia.

Local field potentials and electrocorticography provide
sensitive measures of oscillatory synchronization (see EEG
section). Theta band (4-8 Hz) oscillatory activity within
motor networks of the basal ganglia and cortex is associated
with adult-onset CD [212]. Recently identified cortical gamma
band oscillations (60-80 Hz) may represent another signature of
dystonia [237]. Characterizing these rhythms is directly
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informing therapy, enabling identification of stimulation
that
oscillatory patterns. Current sense-and-stimulate devices could

paradigms and parameters normalize exaggerated
support even richer network analyses if they allowed recording
with higher channel counts and could be attached to a wider

variety of leads tailored for different recording sites.

Non-invasive brain stimulation (NIBS)

The vast majority of dystonia patients do not undergo DBS
surgery. Non-invasive brain stimulation (NIBS) methods provide
less direct but still meaningful ways to modulate neural activity.
Although generally limited to targeting only superficial structures
like the cortex, NIBS can influence wider interconnected
networks, including deeper structures, as demonstrated by
combined neurophysiological and imaging studies showing
widespread changes [238, 239].

Because dystonia pathophysiology involves decreased
inhibition across multiple levels of the nervous system leading
to co-contraction of agonist and antagonist muscles, distorted
digit representation associated with loss of surround inhibition,
and possibly excessive plasticity, most NIBS studies have aimed
to reduce cortical excitability, which has been hypothesized to
lead to increased inhibition and reduced abnormal plasticity.
Accordingly, prior work has used rTMS or low-intensity TES
such as tDCS to target nodes in the dystonia network, such as the
motor cortex, premotor cortex, SMA, or cerebellum.

Transcranial magnetic stimulation (TMS)

Many studies in focal dystonia have used transcranial
magnetic stimulation (TMS), the most widely used form of
non-invasive brain stimulation. It can be applied with many
different protocols, the simplest involving motor cortex
stimulation and measurement of corresponding muscle
activation (see Figure 8). Repetitive TMS (rTMS) is commonly
used to induce plasticity. Most rTMS studies in dystonia employ
designed inhibitory protocols such as low frequency (~1 Hz)
rTMS [17] or continuous theta burst stimulation (cTBS) [240].
FHD is the most studied condition. Low frequency rTMS over
the primary motor cortex [241] and premotor cortex [242, 243]
improves writing in patients with FHD. In CD, one study testing
several cortical sites found that a single session of 0.2 Hz rTMS to
dorsal premotor cortex and motor cortex stimulation produced
the greatest reduction in dystonia [244], while 10 sessions of
bilateral cerebellar ¢TBS reduced CD severity relative to sham
stimulation [245]. In FHD and CD, a single session of repetitive
cerebellar stimulation produced distinct immediate post-effects
on cortical plasticity: cerebellar regulation of cortical plasticity
was lost in FHD, but preserved in CD [246]. In CD, neck
proprioceptive inputs may modulate the relationship between
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Schematic representation of TMS demonstrating the magnetic field generated with the magnetic coil placed over the hand area of the primary
motor cortex. This, in turn, induces electrical current to activate cortical circuits (lightning bolts indicating the electromagnetic pulses) leading to
activation of corticospinal neurons and subsequently alpha motor neurons in the spinal cord that innervate the muscle of interest, e.g., first dorsal
interosseous muscle (FDI). This leads to motor evoked potential (MEP) recorded with surface EMG. Reproduced with permission from [297].

cerebellar output and cortical plasticity [246]. In FHD, loss of
cerebellar control over sensorimotor plasticity correlated with
impaired adaptive reaching [247]. In BSP, low frequency rTMS to
the anterior cingulate cortex has yielded promising results [248].
In summary, inhibitory rTMS targeting premotor cortex, motor
cortex, and cerebellum appear potentially beneficial for FHD and
CD, whereas the anterior cingulate cortex is a promising target
for BSP. Larger randomized controlled trials are still needed.
Future TMS studies in dystonia should control for
pharmacologic state. In a study of FISD with 24 participants,
Zolpidem flattened rest and active input/output curves and
reduced ICF compared to placebo [92]. BoNT also influences
central physiology and therefore the response to TMS. In general,
BoNT decreases sensorimotor activation during voluntary
movements [249]. Electrophysiological evidence from TMS and
reflex studies suggests BoNT-related plasticity in cortex and
brainstem, respectively [250]. These plastic changes may persist, as
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clinical observations indicate lasting modifications of dystonic motor
features beyond individual BoNT cycles.

FHD is also associated with plasticity—as measured using TMS
in with a paradigm known as paired associative stimulation-that is
excessive [251, 252], and abnormally regulated [253]. However, the
findings remain controversial because some studies did not find
excessive plasticity in dystonia [254]. Nevertheless, the complex
longitudinal dynamics of various types of plasticity in dystonia, and
the ability of TMS to measure and modulate plasticity at a
macroscopic level, make plasticity an important direction for
future research with TMS.

Transcranial electrical stimulation (TES)

TES encompasses both tDCS and tACS. A study using
cortical cathodal (excitatory) tDCS over motor cortex found
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no benefit in FHD [255], whereas anodal tDCS of the ipsilateral
cerebellum produced conflicting results [254, 256]. In musician’s
dystonia, improvements have been reported with cathodal tDCS
to the motor cortex of the affected side and anodal tDCS to the
unaffected side combined with motor training [257] or with
bilateral parietal (cathode left, anode right) tDCS [258]. Although
no formal studies exist in CD, case reports describe benefit from
bilateral anodal cerebellar tDCS [259] and bilateral motor cortical
15 Hz tACS [260]. Overall, evidence for tDCS or tACS in
dystonia remains preliminary, and further studies across
different subtypes are needed.

Transcranial ultrasound stimulation (TUS)

Low-intensity TUS is a novel NIBS method offering greater
focality and penetration depth than other NIBS modalities. This
is particularly important for dystonia, as several of the regions
implicated are deeper, subcortical structures. Human studies
show stimulation duration-dependent reductions in cortical
excitability during the application of TUS (the “online” effect)
[261]. Plasticity or offline effects have also been demonstrated. In
non-human primates, fMRI demonstrated that 40 s of TUS to the
frontal polar cortex or SMA altered functional connectivity
their
fingerprint” - the cortical areas with which they normally

between each site and normal  “connectional
show connectivity as determined by BOLD correlations, e.g.,
for SMA it is primarily M1, superior parietal lobe, and middle
cingulate cortex—for up to 60 min [262]. In humans, 80 s of TUS
delivered in a theta burst pattern increased cortical excitability
for at least 30 min [263]. In Parkinson disease and dystonia,
recordings from DBS electrodes in the GPi showed that TUS can
effectively modulate GPi activity, producing protocol-specific
changes in neural activity [264]. Collectively, these findings
position TUS as a promising non-invasive neuromodulation

approach for dystonia.

Integrating brain imaging and NIBS:
toward multimodal, personalized
noninvasive neuromodulation

Dystonia is a multifaceted condition; therefore, multimodal
approaches that integrate neuroimaging and neurophysiology
data into a unified pathophysiological framework offer a logical
path toward deeper understanding and improved treatment.
Within this context, NIBS techniques provide valuable tools
for probing brain activity, elucidating mechanisms, and
identifying novel therapeutic targets. In particular, TMS and
TES can be combined with electrophysiology or neuroimaging to
determine: 1) where to stimulate, by tailoring target regions to
each patient’s individual anatomy or functional fingerprint; 2)
how to personalize stimulation parameters (e.g., intensity,
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frequency) based on individual connectomic and biophysical
models using structural and fMRI data, and 3) when to deliver
stimulation by employing closed-loop, feedback-triggered
paradigms guided by online measures such as EEG.

The optimal neuroimaging technique depends on the
intervention’s objective. Structural MRI (T1- or T2-weighted)
is highly effective for anatomical targeting, but combining it with
metabolic (e.g., PET) and functional modalities (e.g., fMRI, ASL)
has become standard practice for target selection [265]. Recent
advances in hardware now enable modulation of neural circuits
rather than isolated cortical areas, allowing simultaneous
engagement of multiple network nodes and even interaction
between networks [266]. This can be accomplished, for instance,
TMS,
associative-stimulation

cortico-cortical
paradigms  that
synchronous stimulation to two brain regions [267]. Because

with  multicoil including paired-

deliver  semi-
this approach relies on Hebbian spike-timing-dependent
plasticity, tuning it to circuit timing-by integrating diffusion
imaging [268] and EEG-should permit measurement and
modulation of network-level dynamics relevant to dystonia
pathophysiology. Similarly, multichannel TES montages can
focally stimulate specific cortical targets and simultaneously
stimulate different areas belonging to the same or different
networks to probe their dynamic interplay [269]. Recently
developed biophysical modeling algorithms derive features
from individual neuroimaging data to create realistic 3D head
models and simulate stimulation-induced electric field
distributions induced by TES or TMS [270, 271]. Such
personalized models not only improve field control but also
allow optimization of stimulation parameters in advance,
enhancing precision and efficacy.

Multimodal NIBS can also be delivered online by combining
TES or TMS with neurophysiology recordings such as scalp EEG.
Simultaneous TMS-EEG paradigms allow measurement of the
brain’s real-time response to direct perturbation, enabling study
of causal interactions between regions with high temporal
resolution and providing insight into effective connectivity,
[272].
Macroscopic, network level forms of spike-timing dependent

cortical  inhibition/excitation, = and  plasticity
plasticity can be induced using two-site TMS and the effects
quantified with evoked potentials in the EEG (see Figure 9) [273].
The combination of TES-EEG methods can increase the
temporal precision of TES manipulations and enable brain
tACS-EEG

protocols, phase and amplitude of ongoing brain activity are

state-dependent modulation. In closed-loop
used to automatically adjust stimulation parameters and
maximize entrainment of neural activity. This approach has
been used, for example, to enhance slow-wave sleep and
memory consolidation [274, 275] and could be adapted to
target pathological oscillations in dystonia in real-time.

In summary, NIBS paradigms benefit substantially from
integration with

imaging methods, providing extensive

information about cortical functional dynamics with high
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FIGURE 9

Network-level spike-timing-dependent plasticity (STDP) demonstrated with PAS TMS and EEG-based evoked potentials in DLPFC in healthy
volunteers. Red: stimulation in DLPFC before PPC ("FP-PAS"). Blue: stimulation in PPC before DLPFC ("PF-PAS"). (A) Evoked potentials before (“PRE")
and after ("POST") PAS, including per-trial time series ("butterfly plots’) and average time-windowed spatial distributions. Asterisks indicate significant
differences (p < 0.05). (B) Global mean field power differences (POST-PRE), with thick lines underneath showing periods of statistically significant

(p < 0.025) divergence and the bidirectionality of the induced plasticity. Reproduced with permission from [279].
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temporal (e.g., EEG) and spatial (e.g., MRI) resolution. However,
a comprehensive review of NIBS studies across different dystonia
subtypes [276] concludes that the results to date remain
inconclusive. A likely reason is that most studies have targeted
only a single stimulation site-typically somatosensory cortex,
primary motor cortex, dorsal premotor cortex, or cerebellum [9,
277] - rather than addressing network-level dysfunction.
Supporting this view, a recent study demonstrated top-down
causal alterations of functional connectivity within the
sensorimotor network in isolated focal dystonia [135]. Future
work should therefore prioritize personalized multimodal
stimulation protocols designed to influence both within-
network and between-network dynamics.

Computational models

The brainstem and the neural
integrator model

A key motivation for considering brainstem dysfunction in
dystonia came from elegant clinical observations of head
movements in CD [278]. In some patients, rotating the head
away from the clinical null position toward a desired target is
followed by an involuntary slow drift back towards the null, then a
faster corrective movement toward the target. This pattern
resembles gaze evoked nystagmus, which occurs when cerebellar
feedback to the oculomotor neural integrator is impaired [279].
This prompted the question of whether an analogous neural
integrator exists for head movements and whether it is
dysfunctional in CD. Experimental work in animals points to a
midbrain region-the interstitial nucleus of Cajal (INC) - as having
properties consistent with a head-movement neural integrator
[280]. This hypothesis is compelling for two reasons. First, it
shifts attention to the brainstem, where inputs from a range of
neuroanatomical locations and sensory modalities converge on the
neural integrator. The neural integrator hypothesis can, therefore,
accommodate the considerable diversity of findings in the
literature; malfunction in any one of the inputs or the integrator
itself could result in the abnormal neural control of head
movements. Second, it yields testable predictions; for example,
cerebellar and proprioceptive inputs to the INC become potential
targets for central or peripheral neuromodulation.

Beyond the neural integrator model and the INC, three
additional points about the brainstem are noteworthy: 1)
although most of INC’s connections are with brainstem, spinal
cord, and cerebellar regions, the PPN is another key integrative
brainstem nucleus with reciprocal connections to BG and thalamus,
providing a more direct interaction with BGTC loops heavily
implicated in dystonia, 2) a theoretical framework based on
rodent work implicates descending projections from basal
ganglia to brainstem circuits in BSP [111], and 3) brainstem
nuclei are seldom mentioned in lists of brain regions involved
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in dystonia networks, likely because they are difficult to delineate in
standard neuroimaging. Higher field strength MRI should begin to
address this limitation. Future dystonia network models should
therefore incorporate these and other brainstem nodes.

The virtual brain

Because dystonia seems to involve complex brain networks
involving many regions, a potentially fruitful way to integrate and
better understand pathophysiological data from many modalities
is with computational simulations of those networks. For
example, neuroimaging data can be merged with dynamic
mean-field models to create large-scale brain simulations
using a neuroinformatics platform such as The Virtual Brain
(TVB; [281]). It is open source, written in Python, and includes a
graphical interface to support usability. TVB is model agnostic:
users can select from a library of mean-field models, ranging
from simple oscillators to more complicated neural population
models. In addition, the open-source framework allows users to
add their own hypothesized model. Outside of dystonia, several
applications of TVB have been demonstrated. Although recently
adapted for mouse studies [282], TVB is most commonly used to
model empirical human data (e.g., fMRI or EEG), to demonstrate
how structural connectivity and local dynamics jointly shape
intrinsic, resting state activity [283]. Initial clinical applications
focused on stroke, where patient-specific models showed that
local excitability ~predicted physiotherapy-related motor
recovery. In epilepsy, development of the Epileptor model
[284] enabled prediction of seizure focus location and is now
being tested in a national clinical trial for clinical-decision
support [285]. TVB has also been applied to dementia, where
model parameters outperformed standard neuroimaging metrics
in predicting cognitive performance across the disease spectrum
[286]. More directly relevant to dystonia, recent work integrated
detailed models of the basal ganglia in TVB to simulate DBS
effects [287], demonstrating renormalization of circuit dynamics
after stimulation and illustrating the potential to personalize
stimulation parameters and target selection. TVB therefore
represents a promising computational tool for investigating
and treating pathophysiological brain networks in dystonia.
Regardless of the specific modeling framework, the close
coordination of modeling and experiments would inform each
other in an iterative loop that facilitates progress in how we come
to understand brain network pathophysiology in dystonia.

Discussion
Future imaging studies

Future dystonia research with all the imaging modalities
should heed lessons learned from meta-analyses, which
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commonly include a critical review of methodological details in
past studies and make corresponding recommendations for
the of
experiments [40]. Relatedly, future imaging studies would also

maximizing informativeness future  imaging
benefit from larger-sized cohorts and adopting ongoing advances
in analytics. As in neuroscience more broadly, research into
should

algorithmic advances from the broader field of network

dystonia  network pathophysiology incorporate
science [288]. As but one example, functional connectivity
gleaned from rs-fMRI can benefit from widely used [135] and
emerging [289] methods to infer causality in the networks. Yet,
attention to rigor in quality control plays a critical role for
interpretation of findings [84] and improved consistency

would enhance reproducibility and facilitate meta-analyses.

Advances in DBS

When there is clinical justification to do so, DBS-associated
recordings should take advantage of multiple recording sites,
DBS
technology-whether via adaptive programming, coordinated

ideally simultaneously. In parallel, advances in
reset stimulation protocols, or, ultimately, greater cell and
circuit specificity-may provide not only greater treatment
efficacy but also entirely new insights into the network

pathophysiology of dystonia [23].

Vagus nerve stimulation (VNS)

VNS using an implantable device is an approved treatment
for drug-resistant epilepsy and depression. When paired with
rehabilitation, VNS improves upper limb motor function after
ischemic stroke [290]. The vagus nerve can also be stimulated
non-invasively via the outer ear, which receives cutaneous supply
by the auricular branch of the nerve [291], or percutaneously in
the neck—a method that has shown promise for treating freezing
of gait in Parkinson’s disease [292]. Given these findings, and the
vagus nerve’s indirect influence on prefrontal cortical and
other
VNS-possibly combined with rehabilitation-may represent a

cerebellar  regions brainstem  nuclei,

through

potential therapy for dystonia.

Longitudinal dynamics

Most studies of network pathophysiology in dystonia are
either cross-sectional or represent a small number of points in
time (e.g., pre-/post-treatment). Although it would add an
additional dimension to an already complex enterprise,
evaluating how the network pathophysiology changes over
longer time scales would strengthen understanding of the
If we had a better

natural history of the disorder.
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understanding of this process, it could provide a foundation
for developing disease-modifying therapies. As an important
subset of this, developmental aspects of dystonias, especially
for but not limited to childhood-onset dystonias, would
benefit from investigations into how the brain networks
implicated in dystonia develop [293].

Network implications of over-trained
motor patterns

Our understanding of dystonia at the molecular level has
expanded considerably over the past two decades [294]. Yet
many dystonia subtypes, particularly focal forms, are also likely
shaped by environmental influences [295, 296]. Task-specific
dystonias, for example, have been linked to multiple
environmental risk factors [297], and such features can help
infer why motor control and skill reproduction break down
[134, 298].
only

under certain conditions A motor-control

framework is valuable not because it clarifies
mechanism, but also because it provides a shared language
for discussing impairments with patients and for developing
targeted interventions. One such intervention stems from the
observation that patients appear trapped in an over-trained
dystonic motor pattern and behavioral interventions that
stochastically inject variability into movement repetitions
[299]. A

returned to

during retraining can disrupt this pattern

substantial proportion of patients have
professional performance after such an intervention [300].
The

dystonia likely spans a broad sensorimotor hierarchy and

neuroanatomical network underlying task-specific
will vary depending on whether one is trying to find the
network responsible for vulnerabilities endowed by certain
risk factors, the dystonia motor pattern itself, or the clinical
trajectory of the disorder. That said, associative higher-order
regions such as the premotor and parietal cortex emerge
repeatedly across multiple research approaches [136, 298].
This task-specificity has motivated proposals for therapeutic
brain-computer interfaces (BCIs) that enable patients to
modulate pathological brain activity so that it more closely
resembles activity during an asymptomatic task, with the
expectation of symptom reduction [22]. A clinical trial of
such a BCI intervention in LD patients (NCT04421365) is
currently underway.

Can we target the dystonia network
through a common dystonic phenotype?

As molecular insights expand, it is worth asking whether we
have neglected the features of the dystonic phenotype itself [301].
Can dystonia as a phenotype-defined by its characteristic motor
features rather than by etiology (e.g., DYT-TORI1A) or subtype
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(e.g., adult-onset focal dystonia) — be investigated as a meaningful
entity in its own right? The dystonic phenotype has reliable
clinical features, recognizable kinematic characteristics, and
many effective interventions act at the systems control level
rather than the molecular level. For example, DBS provides
benefit
comparatively coarse, most likely modulating activity or

substantial in dystonia, yet its mechanism is
excitability of target regions rather than injecting normal
patterns of neural activity or selectively modifying abnormal
patterns [302]. This raises the question of whether shared
kinematic signatures could help characterize dysfunctional
networks in dystonia, analogous to how oscillatory movement
features serve as teaching signals for adaptive neuromodulation
of tremor [303, 304]. Likewise, neuro-physiotherapy engages the
dystonic network in its entirety, and an emerging evidence base
supporting its use for specific motor control axes within specific
subsets of dystonia [305, 306]. Until targeted molecular therapies
are available, approaches that act on common features of the
dystonic phenotype may represent an effective way to both probe

and modulate the underlying network.

Tremor and dystonia

Tremor is recognized as an important aspect of dystonia [6,
307]. Because of increasing interest in tremor in dystonia, and
because the associated terminology continues to evolve, we
consider this an important topic for future research into the
network pathophysiology of dystonia. The term “dystonic
tremor” has been widely used [308, 309], but the consensus
from a group of specialists in dystonia and tremor have
suggested that this term has had variable interpretations and
can be misleading [310]. They suggest that the term “tremor”
should be reserved for movements that are rhythmic, and that,
in the context of dystonia, repetitive movements that appear
grossly arrhythmic should be called “jerky dystonia.” But
precisely how rhythmicity is operationally defined remains
unclear. In our present treatment, our descriptions of
dystonia with tremor include the traditional, broadly
defined dystonic tremor.

In general, dystonia with and without tremor share the
same overall circuit pathophysiology, encompassing basal
[311].
However, dystonia with tremor seems to exhibit a stronger
contribution from CbTC
rhythmically engaged. In dystonia with tremor in the upper

ganglia, cerebellum, and sensorimotor cortex

loops that might be more

limb or head, there was increased volume of motor cortex and
the same thalamic region that shows tremor-locked activity,
and cerebellum-thalamic  connectivity ~was positively
correlated with tremor power [183]. In the context of LD,
exhibited additional

abnormalities on fMRI in medial frontal gyrus, cerebellum,

dystonic voice tremor patients

and posterior limb of internal capsule [312]. Compared to
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essential tremor, dystonic tremor patients exhibited greater
reductions in functional connectivity between cortex, BG,
thalamus, and cerebellum [161]. Single unit neuronal
recordings during procedures previously used to ablate the
INC for CD found firing properties that differed for CD with
versus without tremor, for thalamic subregions receiving
projections from either GPi or cerebellum [313]. The firing
patterns in GPi may be more nuanced: CD with and without
jerky tremor had similar firing patterns, but CD with
sinusoidal tremor showed a different distribution of firing
pattern properties [314, 315]. Interestingly, one study
suggests that different types of tremor show different
responses to non-invasive stimulation; tACS suppressed or
enhanced tremor in a phase-dependent fashion for sinusoidal
but not for jerky tremor, and for cerebellar but not motor
cortical stimulation [316]. Collectively, the evidence to date
suggests that networks involving the cerebellum play an
important role in at least some types of tremor seen

in dystonia.

Functional dystonia

Although this review was inherently focused on organic
dystonia, contemporary views of functional movement
disorders, including functional dystonia, view it as having
pathophysiology that can inform our understanding of
dystonia more broadly defined. Organic and functional
dystonias exhibit substantial overlap in their brain network
abnormalities, including decreased cortical inhibition [317,
318]. But there are also several differences. Functional
dystonia exhibited decreased volume of caudate, nucleus
[319]. At
functional dystonia’s metabolic demands measured with
PET were
decreased in motor cortex, a pattern opposite of that found

accumbens, putamen, and thalamus rest,

increased in the cerebellum and BG and

in organic dystonia [320]. Functional dystonia also exhibited
the
temporoparietal junction and a) bilateral sensorimotor

decreased functional connectivity between right
cortex [321] and b) dorsal and rostral prefrontal cortex
[322]. Given the role of the temporoparietal junction in
comparing internal predictions of motor intentions with
actual motor events, this might explain the altered sense of
self-agency characteristic of functional dystonia. Functional
dystonia also may be associated with altered emotional
processing, because during emotional processing tasks
functional dystonia patients exhibited decreased activation
in right medial temporal gyrus, bilateral precuneus, and left
insula [323]. A limited number of cases of functional dystonia
patients receiving DBS showed GPi firing rates similar to
organic dystonia [324]. Non-invasive brain stimulation over
left dorsolateral prefrontal cortex alleviated symptoms in
functional dystonia, including intermittent theta burst TMS
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[325] and anodal tDCS [326]. As with most research with
organic dystonia, the study results are associations, and
therefore cannot inform what is cause vs. effect in terms of
brain network changes.

Summary

In summary, there is alarge and growing body of evidence
that has begun to characterize dysfunctional networks in
dystonia. The evidence comes from a multitude of
modalities for measuring brain regional and network
activity in humans. Across the vast literature on this topic,
it is difficult to determine how much specific dystonia
subtypes, tasks, and study designs variously contribute to
the heterogeneity of results [22]. In general, there is
convergent evidence implicating networks that include
primary sensorimotor cortical areas, several nuclei in the
BG, the thalamus, the cerebellum, and the brainstem.
However, there is also evidence for numerous additional
regions, primarily in the form of a variety of cortical areas
beyond primary sensorimotor territories, such as premotor,
supplementary motor, and parietal cortices.

There is a synergistic relationship between the research
into these networks and the development of new and
improved treatments. Naturally, the research into the
networks informs new treatment development. But also
measuring brain network activity in response to treatment,
as well as during the process of implanting DBS electrodes,
for example, can inform understanding of the dysfunctional
networks. Ultimately, as our knowledge of the specific
dysfunctions of the intricate networks involved in dystonia
improves, it should, in turn, give rise to improved and
personalized therapies, BoNT,
DBS, and NIBS.

including oral drugs,
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Glossary

ACh Acetylcholine

ADSD adductor spasmodic dysphonia
AES-SDM  anisotropic effect size-based signed differential mapping
BG basal ganglia

BGTC basal ganglia thalamocortical
BOLD blood oxygen level-dependent
BoNT botulinum neurotoxin

BSP blepharospasm

CD cervical dystonia

CbTC cerebellothalamocortical

CT computed tomography

cTBS continuous theta burst stimulation
DBS deep brain stimulation

dMRI diffusion MRI

EEG electroencephalography

FDG fluorodeoxyglucose

FHD focal hand dystonia

fMRI functional MRI

fNIRS functional near-infrared spectroscopy
FTSD focal task-specific dystonia

GABA gamma-aminobutyric acid
GABAA GABA A (i.e., GABA receptor type)
GP globus pallidus

GPi globus pallidus, internal segment
ICA independent components analysis
INC interstitial nucleus of Cajal

LD laryngeal dystonia

M1 primary motor cortex

MAN manifesting

MEG magnetoencephalography

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MRI magnetic resonance imaging
NIBS noninvasive brain stimulation
NM non-manifesting

PET positron emission tomography
PPN pedunculopontine nucleus
rs-fMRI resting state functional MRI
r'TMS repetitive TMS

S1 primary somatosensory cortex
SMA supplementary motor area

Dystonia

35

STN

tACS

tDCS

TES

TMS

TUS

TVB

VBM

10.3389/dyst.2025.15446

subthalamic nucleus

transcranial alternating current stimulation
transcranial direct current stimulation
transcranial electrical stimulation
transcranial magnetic stimulation
transcranial ultrasound

The Virtual Brain

voxel-based morphometry

vagus nerve stimulation
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