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Dystonia is a movement disorder characterized by sustained or intermittent 

muscle contractions causing abnormal, often repetitive, movements, postures, 

or both. DYT1 dystonia is an early-onset dystonia caused by DYT1/TOR1A gene 

mutations with reduced penetrance. It is believed that dystonia is produced by 

abnormal brain networks, but details remain unknown. Recent studies have 

shown that acute cerebellar knockdown of torsinA using small hairpin RNAs 

(shRNAs) can induce overt dystonia in adult mice. However, shRNAs have off- 

target effects that may alter the expression of unintended genes. To avoid this 

issue, we generated an alternate acute torsinA knockdown model using cre- 

loxP technology by injecting AAV-cre into the cerebellum of the Dyt1loxP/loxP 

mouse. These knockdown mice exhibited overt dystonia and displayed a 

spinning behavior, characterized by bidirectional circling or spinning during 

tail suspension. The overt dystonia and spin behavior were not observed in 

control mice injected with the AAV-GFP virus. Additionally, the knockdown 

mice showed decreased spontaneous firing and reduced intrinsic excitability of 

Purkinje cells. These findings confirmed that the acute cerebellar knockdown of 

torsinA can produce overt dystonia and further support the cerebellum’s role in 

the pathogenesis of DYT1 dystonia. However, the emergence of a spinning 

phenotype raises questions about the validity of the acute knockdown models 

as accurate representations of human dystonia.
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Introduction

Dystonia is a neurological disorder characterized by sustained or intermittent muscle 
contractions that result in abnormal, often repetitive movements, postures, or both [1]. 
DYT1 or DYT-TOR1A dystonia is the most common early-onset generalized dystonia 
[2]. Most patients carry a heterozygous three-nucleotide (ΔGAG) deletion in exon 5 of the 
DYT1/TOR1A gene, leading to the loss of a glutamate residue in the torsinA protein [3]. 
Although numerous studies suggest that this mutation results in a loss-of-function of 
torsinA, a toxic-gain-of-function effect cannot be ruled out [4, 5]. Nevertheless, the 
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precise mechanism by which the mutation leads to dystonia 
remains largely unknown. Dyt1 knockin mice harboring the 
corresponding in-frame ΔGAG deletion in the endogenous 
Dyt1/Tor1a gene have been developed to mimic the human 
condition [6, 7]. Although these mice exhibit several dystonia- 
like phenotypes, such as motor and sensory deficits, abnormal 
gait, and hind limb muscle co-contraction [7–10], the lack of 
overt dystonia phenotypes in most genetically modified models 
has hindered progress in understanding the disease [11–17].

The cerebellum—and specifically its Purkinje cells—plays 
a key role in controlling movement and posture, with 
multiple animal studies implicating these cells in dystonia 
pathogenesis [15, 18–29]. Dyt1 knockin mice show altered 
Purkinje cell morphology [30, 31] and abnormal firing 
patterns, with increased large-conductance calcium- 
activated potassium (BK) current and elevated BK channel 
protein levels [32]. Most importantly, acute knockdown of 
torsinA in the adult cerebellum using shRNAs induces overt 
dystonia in adult mice—an effect not observed when 
knockdown is performed during development or directed 
to the striatum [33], suggesting the likely involvement of 
cerebellar dysfunction in the pathogenesis of DYT1 and 
other dystonias.

The present study aims to validate cerebellar acute torsinA 
knockdown models of DYT1 dystonia. Small hairpin RNAs 
(shRNAs) or small interfering RNAs (siRNAs) are known to 
cause significant off-target effects that may alter the expression of 
unintended genes [34]. Here, we developed an alternate acute 
torsinA knockdown (AAV-cre KD) mouse model by bilateral 
stereotaxic injection of AAV5-CMV-cre-GFP into the 
cerebellum of Dyt1loxP/loxP mice, with wild-type (WT) mice 
receiving AAV5-CMV-GFP as controls. Cre-mediated 
recombination subsequently reduced torsinA expression in the 
cerebellum. The motor behavior of these mice and the 
electrophysiological properties of the cerebellar Purkinje cells 
were characterized.

Methods

Animal

Dyt1loxP/loxP mice were bred and genotyped as described 
previously [35, 36]. Genotyping for Dyt1loxP/loxP mice was 
performed by PCR using a set of Dyt1loxpF (5_-GAGGAG 
AAAATAGGGGCTCAGTAT-3_), Dyt1loxpR (5_-GAAGGT 
TGAGAAACTGCCTTAGAG-3_) primers for Dyt1loxP. All 
experiments were carried out by investigators blind to the 
genotypes and treatment, in compliance with the USPHS 
Guide for Care and Use of Laboratory Animals, and approved 
by the IACUC at the University of Florida. The mice were housed 
with ad libitum access to food and water under 12 h light 
and 12 h dark.

Stereotaxic injection of AAV

AAV5-CMV-cre-GFP (#105545-AAV5) and AAV5-CMV- 
GFP (#105530-AAV5) were purchased directly from Addgene. 
Stereotaxic administration of AAV5-CMV-cre-GFP and AAV5- 
CMV-GFP was performed on 5- to 7-month-old male 
Dyt1loxP/loxP mice and WT mice under anesthesia using a 
mixture of O2 and isoflurane (dosage 4% for induction, 1.5% 
maintenance), respectively. Mice received bilateral 
intracerebellar injections (two sites/hemisphere) of virus 
diluted in Lactated Ringer’s solution (Hospira, Lake Forest, IL; 
four injections per cerebellum). For each injection, 2 µL volume 
was delivered to the medial or lateral cerebellar nucleus at a 
0.1 μL/min infusion rate using a 10-µL Hamilton syringe (BD, 
Franklin Lakes, NJ) retrofitted with a glass micropipette. One 
minute after the infusion was completed, the micropipette was 
retracted 0.3 mm and allowed to remain in place for 4 min before 
complete removal from the mouse brain. Anterior-posterior and 
medial-lateral coordinates were calculated from the bregma, and 
the dorsal-ventral coordinates were calculated from the dural 
surface. These measurements were made on an experimentally 
determined flat skull, following the previously described 
protocol [37].

Immunohistrochemistry

Adult male WT mice injected with AAV-CMV-GFP were 
euthanized and perfused with ice-cold 0.1 M phosphate buffer 
(PB; pH 7.4) followed by 4% paraformaldehyde in 0.1 M 
phosphate-buffered saline (PBS; pH 7.4). The brains were 
incubated with the fixative overnight and then with 30% 
sucrose in 0.1 M PB until the brain sank. The brain was 
embedded in OCT medium, and sagittal sections (20 μm) 
were collected by a Cryostat Freezing Microtome.

The brain sections were washed three times in 10 mM 
glycine/0.1 M PB for 5 min each and blocked in 2% gelatin/ 
0.1 M PB for 15 min, 10 mM glycine/0.1 M PB for 5 min, and 
0.1% BSA/0.1 M PB for 5 min. The blocked slices were incubated 
in Anti-GFP chicken polyclonal primary antibody (GFP-1020, 
Aves Labs; 1:2500 dilution) in 1% BSA/0.1 M PB for 2 h and 
washed in 0.1% BSA/0.1 M PB for 5 min each, six times. The 
sections were then incubated with Alexa Fluor® 488 AffiniPure® 
Donkey Anti-Chicken IgY (IgG) (H + L) (Jackson 
ImmunoResearch, code no. 703-545-155, 1:800 Dilution) in 
1% BSA/0.1 M PB for 2 h and then washed in 0.1% BSA/ 
0.1 M PB for 5 min each, six times. The slices were mounted 
on glass slides using Vectashield Hard Set mounting medium for 
fluorescence (Vector Lab Inc., H-1000), covered with a cover 
glass, and stored at 4 °C overnight for subsequent imaging using a 
fluorescent microscope.

Images were acquired using a Keyence BZ-X810 fluorescence 
microscope equipped with a CCD detector. A ×4 objective lens 
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(numerical aperture 0.13; working distance 16.5 mm; plan field 
flatness) was used for imaging. Whole-section images were 
generated using the Keyence image-stitching program, and 
image analysis was performed with the BZ-X800 
Analyzer software.

Western blot

Thirteen weeks after AAV injection, 7 AAV-injected 
Dyt1loxP/loxP mice and 3 Dyt1loxP/loxP control mice were 
euthanized, and the brains were harvested for Western blot as 
described [38]. Protein lysates were prepared and homogenized 
in an SDS-based lysis buffer. Samples were run on SDS-PAGE gel 
(BioRad) and transferred to Millipore Immobilon-FL PVDF 
membrane. Membranes were blocked and subsequently 
incubated with primary torsinA antibody (Abcam 34540, 1: 
300), β-tubulin (Santa Cruz sc-9935, 1:14,000) overnight, 
followed by the secondary antibody donkey anti-rabbit 680 
(LICORbio 926-68073 1:15,000) or donkey anti-goat 800 CW 
(LICORbio 926-33214 1:15,000) for 2 h. After washing and 
drying the membranes, the signals were analyzed using LI- 
COR Odyssey imaging system.

Motor behavior assessment

The presence of dystonia and its severity were quantified 
using a previously published scale [33, 39]. Briefly, 0 = normal 
behavior; 1 = abnormal motor behavior, no dystonic postures; 
2 = mild motor impairment, dystonic-like postures when 
disturbed; 3 = moderate impairment, frequent spontaneous 
dystonic postures; 4 = severe impairment, sustained dystonic 
postures. Seven AAV-injected Dyt1loxP/loxP mice and eight AAV- 
injected WT control mice were assessed by the dystonia scale at 3, 
5, 7, 9, 11, and 13 weeks after injection, respectively. During 
routine handling in the later phase of the experiment, a severe 
spinning behavior was unexpectedly observed in a subset of KD 
mice. To characterize this emergent phenotype, the tail hang test 
[40] was performed and was systematically video-recorded just 
before euthanasia. These videos were subsequently analyzed 
frame by frame in a post hoc manner to quantify their 
features, including latency to onset, duration, and rotational 
speed (defined as rotations per second, RPS).

Electrophysiology

Thirteen weeks after AAV injection, 5 AAV-injected 
Dyt1loxP/loxP mice and 3 Dyt1loxP/loxP control mice were 
euthanized, and the brains were harvested for 
electrophysiology study. The brains were rapidly removed and 
briefly chilled in the ice-cold cutting solution containing (in mM) 

180 sucrose, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 1 CaCl2, 
10 MgCl2, and 10 D-glucose and were oxygenated with 95% O2- 
5% CO2 (pH 7.35~7.45). Parasagittal 300 µm-thick cerebellar 
brain slices were cut with a Vibratome (LEICA VT 1000S, Leica 
Microsystems, Wetzlar, Germany) in the same ice-cold cutting 
solution. Slices were first incubated on a brain slice keeper 
(AutoMate Scientific, Inc. Berkeley, CA) and covered by a 
thin layer of artificial cerebrospinal fluid (ACSF) containing 
(in mM) 126 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 
2 CaCl2, 2 MgCl2, and 10 D-glucose. They were constantly 
oxygenated at 35 °C for 60 min. After a minimum of 60 min 
of incubation, a slice was transferred to a submerged recording 
chamber with a continuous flow (1.5 mL/min) of 
oxygenated ACSF.

The spontaneous firing properties of the Purkinje cell were 
measured by cell-attached patch-clamp recording in brain 
slices as described [32, 41–45]. The Purkinje cells located in 
the apex and bank of the cerebellar vermis lobules 4 to 6 were 
identified by infrared visualization in parasagittal cerebellar 
slices. Lobules 4 to 6 were selected because they receive inputs 
from the hind limbs. The spontaneous action potentials were 
recorded by the voltage clamp with cell-attached mode, 
infrared-differential interference contrast microscopy (IR- 
DIC) with video microscopy (Axioskop-FS; Carl Zeiss, Jena, 
Germany), a 40× water-immersion lens, and an Axopatch 1D 
amplifier (Axon Instruments, Foster City, CA). The patch 
electrodes had a resistance of 5–10 MΩ when filled with a 
K-gluconate-based intracellular solution containing (in mM): 
112.5 K-gluconate, 4 NaCl, 17.5 KCl, 0.5 CaCl2, 5 MgATP, 
1 NaGTP, 5 EGTA, 10 HEPES, pH 7.2 (osmolality 
270–280 mOsm/l). Positive pressure was applied to the 
patch electrode as it approached the Purkinje cell. Suction 
was applied to the electrode to create a seal (>5 GΩ) between 
the recording pipette and the cell membrane. Action potential 
current was recorded in the current-clamp mode that 
maintained an average of 0 pA holding current. To isolate 
the intrinsic activity, we added picrotoxin (10 µM), CGP55845 
(1 µM), and kynurenic acid (5 mM) to the ACSF to block 
synaptic transmission.

The intrinsic activity was assessed by whole-cell recording. 
After breaking through the cell membrane, access resistance was 
maintained throughout at <25 MΩ. The action potential for the 
current step recording was triggered by depolarizing the current 
steps by 300 ms. All experiments were maintained at 35 °C ± 
0.5 °C by adjusting the temperature of the bathing solution using 
Warner TC-344B Dual Automatic Temperature Controller 
(Warner Instruments, Holliston, MA). Cell-attached and 
whole-cell recordings were obtained from Purkinje cells using 
Axopatch 1D Amplifier (Molecular Devices). The recording data 
were acquired using pClamp 10 software, and the signals were 
filtered at 5 kHz and digitized at 10 kHz using a DigiData 1440 
(Molecular Devices). Cell firing activity was further analyzed by 
the Mini Analysis Program (Synaptosoft).
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FIGURE 1 
(A) Strategies to knock down torsinA in the cerebellum of adult mice using the cre-loxP system. Numbers represent the exons of the Dyt1 or 
Tor1a gene, and the open triangles indicate loxP sequences inserted into the introns. (B) Strong GFP expression was observed in the cerebellum of the 
WT mice injected with AAV5-CMV-GFP. Sagittal sections were displayed. The left image was captured with a Keyence BZ-X810 microscope using 

(Continued ) 
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Statistics

The Western blot signals were analyzed using the Student’s 
t-test. Electrophysiological recording data were analyzed using 
the SAS/STAT mixed model for normally distributed data or 
GENMOD procedures when they were not normally distributed, 
with a log link for gamma distribution and a GEE model for 
repeated measurements. The statistical power was estimated 
using 1,000 simulations with a similar GENMOD model. The 
recorded neurons were nested within each animal. The age was 
used as a covariate in all electrophysiological analyses. Dystonia 
scores were evaluated using the SAS GENMOD procedure with a 
multinomial distribution, a cumulative logit link function, and a 
GEE model for repeated measurement. Significance was assigned 
at p ≤ 0.05.

Results

The strategies used to knock down torsinA in the cerebellum 
are shown in Figure 1A. Instead of shRNA targeting torsinA 
mRNA, we took advantage of the cre-loxP system and the floxed 
Dyt1 locus we developed earlier [35]. We used an AAV virus 
expressing Cre and GFP under the control of a general promoter, 
CMV. GFP was included to assess the efficiency of AAV 
transduction. Under UV light, strong fluorescent signals were 
observed in the cerebellum of AAV-injected mice (Figure 1B), 
confirming widespread AAV transduction. The effect of Cre- 
mediated recombination was assessed indirectly through a 
Western blot analysis of torsinA protein levels. Western blot 
showed a significant decrease in torsinA expression level in the 
cerebellar lysates of AAV-transduced animals compared to 
control mice (Figure 1C). In contrast, the levels in the 
cerebral cortex, brainstem, and striatum were unaffected 
(Supplementary Figure S1), suggesting successful inactivation 
of the endogenous Dyt1 gene specifically in the cerebellum.

We observed the home cage behavior to determine whether 
the knockdown of torsinA resulted in overt dystonia 
(Supplementary Video S1). The presence of dystonia and its 
severity were assessed using a previously published Dystonia 
scale [33, 39]. Briefly, 0 = normal behavior; 1 = abnormal motor 
behavior, no dystonic postures; 2 = mild motor impairment, 
dystonic-like postures when disturbed; 3 = moderate 
impairment, frequent spontaneous dystonic postures; 4 = 
severe impairment, sustained dystonic postures. The KD mice 
showed overt dystonia in five out of seven mice within 9 weeks, as 

evidenced by abnormal hindlimb postures (Figure 2A) and 
increased overall dystonia scores in the KD mice (χ2 = 7.55, 
p = 0.006, Figure 2B). In addition to these general dystonic 
postures, a distinct and dramatic phenotype emerged in three of 
the five dystonic mice. This behavior was most clearly observed 
and captured on video during the later stages of the experiment, 
as the animals’ general dystonia scores reached their peak 
severity. These mice exhibited recurrent episodes of vigorous, 
bidirectional spinning, particularly upon tail suspension 
(Supplementary Video S2). To provide a rigorous analysis, we 
quantified this behavior from the video recordings. The onset of 
spinning was remarkably rapid, with a latency of less than one 
second. The behavior was forceful and sustained; in the two most 
severely affected animals, the rotational speed reached up to 
5.4 rotations per second (RPS), and the spinning bouts 
consistently lasted for more than 10 s. The third affected 
mouse displayed a similar but milder spinning phenotype. 
None of the WT control mice injected with an AAV5-CMV- 
GFP virus exhibited these phenotypes (Supplementary 
Videos S3, S4).

To contextualize these findings, we statistically compared the 
penetrance of overt dystonia in our AAV-cre KD model (71.4%, 
5/7 mice) with established models. This penetrance rate is 
significantly higher than that reported in constitutive Dyt1 
ΔGAG knock-in mice [6, 7], which typically exhibit no overt 
dystonia (0%; p < 0.01, Fisher’s exact test). Furthermore, the high 
penetrance in our model is comparable to that observed in acute 
cerebellar shRNA knockdown models (p > 0.05) [33], supporting 
the validity of acute cerebellar suppression of torsinA in 
recapitulating motor symptoms.

To determine the effect of torsinA KD on Purkinje cell firing, 
we measured spontaneous firing and intrinsic excitability of the 
Purkinje cell in acute brain slices. Cell-attached recording of 
Purkinje cells revealed a 27% decrease in spontaneous firing 
frequency (control: 19 cells/3 mice; KD: 29 cells/5 mice; p = 0.04; 
statistical power = 1.0; Figures 3A,B) while coefficient of variation 
(CV) was not significantly altered (p = 0.55; Figure 3C). 
Decreased spontaneous firing in KD mice is consistent with 
our earlier finding in Dyt1 knockin mice [32].

Depolarizing current steps were injected into the Purkinje 
cell of KD and control mice to assess intrinsic excitability. We 
injected a brief, positive current into the cell, which causes the 
membrane potential to become more positive, or depolarized. 
The action potentials produced are indicative of intrinsic 
excitability. KD mice exhibited 27% fewer action potentials 
than controls (p = 0.0004, Figures 3D–G). Decreased intrinsic 

FIGURE 1 (Continued) 
both regular and fluorescent lights and merged together. The stitched image on the right was captured by a Leica confocal microscope, and the 
contour of the cerebellum is outlined. (C) TorsinA protein expression levels were reduced in AAV-cre KD mice. Western blot and quantification 
showing a reduction in torsinA expression in cerebellar lysates from AAV-injected animals (AAV) compared to control mice (CT). Molecular marker 
locations are indicated on the left. TorsinA KD was reduced by 51% ± 11% (Mean ± S.E.M, torsinA KD n = 7; control n = 3). *p < 0.05.
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excitability indicated that the KD Purkinje cells would be less 
likely to fire action potentials, which could explain the decreased 
spontaneous firing frequency.

Discussion

We developed an alternate torsinA KD model to validate 
whether cerebellar torsinA KD can be a robust dystonia 
phenotypic model. Using the cre-loxP system-based approach, 
we observed overt dystonia in 5 out of 7 mice, similar to the 
shRNA KD model [33]. None of the 8 WT mice injected with 
AAV5-CMV-GFP showed overt dystonia, supporting that these 
symptoms are specific to torsinA knockdown rather than 
artifacts of the viral vector or surgery. Dyt1 knockin mice 
show altered Purkinje cell morphology [30, 31] and abnormal 
spontaneous firing, with increased BK current and elevated BK 
channel protein levels [32]. BK channels have been implicated in 
dystonia [46–49]. Together, these results support a key role of the 
cerebellum in DYT1 dystonia. However, 3 of the 5 dystonic 
AAV-cre KD mice showed circling or spinning phenotype, which 
is not reported in the shRNA KD mice [33] and question the 
validity of cerebellar torsinA KD mice to model DYT1 dystonia.

Our KD mice and the previous shRNA KD mice show overt 
dystonia, supporting a key role of the cerebellum in 
DYT1 pathogenesis. In contrast, models with conditional 
torsinA knockout (pKO) or mutant knockin (Pcp2-KI) in 
Purkinje cells show better motor performance [50, 51]. The 
discrepancy may result from developmental compensation, as 

shRNA-mediated torsinA KD in young mice does not lead to 
overt dystonia [33]—or from the involvement of granule cells 
and deep cerebellum nuclei, which are affected in the KD models 
but spared in pKO and Pcp2-KI mice. Notably, during 
development, conditional knockin of ΔGAG mutation in the 
mouse cerebellum with engrailed1-Cre (En1 Cre) does not 
produce overt dystonia [4]. Future studies should use En1- 
creERT1 [52] or Pcp2-creERT2 [53] lines to inducibly knock 
out the Dyt1 gene in adult mice to resolve these discrepancies.

Although both AAV-cre KD mice and shRNA KD mice 
support an essential role for the cerebellum in 
DYT1 pathogenesis, it remains unclear whether dystonia 
originates in the cerebellum. For example, Pcp2-KI mice 
showed normal Purkinje cell firing [41] in contrast to the 
global Dyt1 knockin mice [32], suggesting that the cerebellum 
may act as a downstream node rather than the origin of dystonia. 
The Purkinje cell abnormality in Dyt1 KI mice [32] likely 
originated from the striatum [41], and the overt dystonia in 
acute KD mice supports the idea that the cerebellum functions as 
a node downstream of the striatum via a disynaptic pathway 
linking these two structures [54]. Remarkably, conditional 
knockout of torsinA in the striatum mimics beam walking 
deficits in global Dyt1 knockin mice [7, 36, 38], whereas acute 
shRNA KD in the adult striatum and globus pallidus does not 
produce overt dystonia [33]. The exact role of the cerebellum and 
basal ganglia in DYT1 dystonia remains to be fully delineated.

We found significantly reduced spontaneous firing in vitro in 
the AAV-cre KD mice, which is consistent with the in vivo 
finding from shRNA KD mice [33]. We examined further and 

FIGURE 2 
Overt dystonia phenotypes in AAV-cre KD mice. (A) Mouse #2 at 9 weeks after the injection of AAV-cre exhibited an abnormal hindlimb posture 
(arrow), scale bar = 1 cm. (B) The dystonia scores at 3, 5, 7, 9, 11, and 13 weeks after injections, and the injection day at 0 weeks are plotted for each AV- 
CMV-GFP-injected control mouse (blue; animal ID 8-15; n = 8) and AAV-CMV-Cre-GFP-injected KD mouse (other colors; animal ID 1-7; n = 7).
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FIGURE 3 
Decreased activity in Purkinje cells in AAV-cre KD mice was revealed by brain slice recording. (A) Representative traces for control and AAV-cre 
KD mice. (B) Comparison of the spontaneous firing frequency of Purkinje cells between AAV-cre KD and control mice. (C) Comparison of CV 
(coefficient of variation) of the Purkinje cells between control and AAV-cre KD mice. (D) Injected current-evoked action potentials of a recorded 

(Continued ) 
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found significantly decreased intrinsic excitability of AAV-cre 
KD Purkinje cells. Reduced intrinsic excitability would likely 
decrease the spontaneous firing of Purkinje cells both in vivo and 
in vitro. The molecular basis of reduced intrinsic excitability 
remains unknown, but we reported previously that BK channel 
activity was significantly increased [32], which could contribute 
to the decreased intrinsic excitability. Increased BK channel 
activity allows more potassium ions to move out of the cell, 
making the Purkinje cells less likely to fire. The AAV-cre KD 
mice are expected to reduce torsinA protein levels in other 
cerebellar neurons, including deep cerebellar nuclei, granule 
cells, and other interneurons. The effect of torsinA KD in 
these neurons remains to be investigated. Interestingly, 
aberrant outputs of glutamatergic neurons in deep cerebellar 
nuclei appear to mediate dystonic movement in the Prrt2 mouse 
model [55], suggesting the importance of deep cerebellar nuclear 
neurons and their modulation by Purkinje cells.

We detected an unexpected bidirectional circling and 
spinning behavior during tail suspension in severely affected 
mice, resembling spinning behavior observed in a shRNA KD 
model targeting Sgce mRNA in the cerebellum, where motor 
deficits, spinning, and myoclonic-like jerky movements were 
alleviated by alcohol consumption [56]. The mutation of the 
SGCE gene causes myoclonus-dystonia or DYT11 dystonia [57]. 
The spinning behavior is unique to Sgce shRNA KD mice 
compared to other models of dystonia, including torsinA 
shRNA KD mice [56]. Although there is no spinning 
symptom in DYT11 dystonia patients, the alcohol rescue in 
the Sgce KD mice suggests that the spinning during tail 
suspension may be related to myoclonus-dystonia 
manifestation in mice, since DYT11 patients can get 
temporary relief by alcohol ingestion [58–60].

It is interesting that both Sgce shRNA KD and AAV-cre KD mice 
showed spinning behavior. ε-sarcoglycan, the product of the Sgce 
gene, is known to interact with torsinA. TorsinA binds to mutant ε- 
sarcoglycans and promotes their degradation [61]. Mutant mice with 
double mutations in the torsinA gene and Sgce show an earlier onset 
of motor deficits [62]. The common pathway affected in Sgce shRNA 
KD and AAV-cre KD mice remains to be determined.

On the other hand, vertigo, dizziness, and imbalance are 
associated with lesions of the vestibulo-cerebellar, vestibulo- 
spinal, or cerebellar ocular motor systems [63]. Acute 
knockdown of torsinA and Sgce might have damaged some of 
these systems, leading to the spinning behaviors in these mice. In 
the torsinA and Sgce KD mice without spinning behavior, it is 
plausible that vestibulo-cerebellar and cerebellar ocular motor 

system impairments exist, which may contribute to imbalance 
or even overt dystonia in torsinA and Sgce KD mice. Future 
research should explore localized or refined cerebellar AAV 
manipulations to avoid perturbations to the vestibulo-cerebellar 
and cerebellar ocular motor systems. It will also be interesting to 
study how vestibulo-cerebellar and cerebellar ocular motor system 
dysfunction contributes to dystonia pathogenesis and treatment. 
Vestibular dysfunction has been linked to focal or cervical dystonia 
[64–68]. A patient develops cervical dystonia soon after ear surgery 
that causes vestibular hypofunction [69]. Another report detailed an 
idiopathic cervical dystonia patient with benign paroxysmal 
positional vertigo [70]. To our knowledge, there are no reports 
of vestibular dysfunction in DYT1 and DYT11 dystonias, therefore, 
the acute torsinA and Sgce KD models may not accurately represent 
DYT1 and DYT11 dystonias. This is the major weakness of the 
current study and the use of acute gene KD models in dystonia 
research in general. Additionally, while our analysis of the spinning 
phenotype provided valuable data on its severity, a prospective 
study designed to systematically track the emergence and 
progression of this specific behavior from earlier time points 
would be necessary to understand its relationship with the 
overall dystonia pathology fully. Additional limitations include 
the fact that acute KD of torsinA in adults does not occur in 
DYT1 patients, and recent studies have pointed to a developmental 
origin of DYT1 dystonia [71–73]. This underscores the need for 
transgenic models with developmental genetic manipulations to 
replicate the human condition more accurately.
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