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Dystonia is a movement disorder characterized by sustained or intermittent
muscle contractions causing abnormal, often repetitive, movements, postures,
or both. DYT1 dystonia is an early-onset dystonia caused by DYT1/TORI1A gene
mutations with reduced penetrance. It is believed that dystonia is produced by
abnormal brain networks, but details remain unknown. Recent studies have
shown that acute cerebellar knockdown of torsinA using small hairpin RNAs
(shRNAs) can induce overt dystonia in adult mice. However, shRNAs have off-
target effects that may alter the expression of unintended genes. To avoid this
issue, we generated an alternate acute torsinA knockdown model using cre-
loxP technology by injecting AAV-cre into the cerebellum of the Dyt1/©/ox?
mouse. These knockdown mice exhibited overt dystonia and displayed a
spinning behavior, characterized by bidirectional circling or spinning during
tail suspension. The overt dystonia and spin behavior were not observed in
control mice injected with the AAV-GFP virus. Additionally, the knockdown
mice showed decreased spontaneous firing and reduced intrinsic excitability of
Purkinje cells. These findings confirmed that the acute cerebellar knockdown of
torsinA can produce overt dystonia and further support the cerebellum’s role in
the pathogenesis of DYT1 dystonia. However, the emergence of a spinning
phenotype raises questions about the validity of the acute knockdown models
as accurate representations of human dystonia.
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Introduction

Dystonia is a neurological disorder characterized by sustained or intermittent muscle
contractions that result in abnormal, often repetitive movements, postures, or both [1].
DYTI1 or DYT-TORIA dystonia is the most common early-onset generalized dystonia
[2]. Most patients carry a heterozygous three-nucleotide (AGAG) deletion in exon 5 of the
DYTI/TORIA gene, leading to the loss of a glutamate residue in the torsinA protein [3].
Although numerous studies suggest that this mutation results in a loss-of-function of
torsinA, a toxic-gain-of-function effect cannot be ruled out [4, 5]. Nevertheless, the
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precise mechanism by which the mutation leads to dystonia
remains largely unknown. Dytl knockin mice harboring the
corresponding in-frame AGAG deletion in the endogenous
Dytl/Torla gene have been developed to mimic the human
condition [6, 7]. Although these mice exhibit several dystonia-
like phenotypes, such as motor and sensory deficits, abnormal
gait, and hind limb muscle co-contraction [7-10], the lack of
overt dystonia phenotypes in most genetically modified models
has hindered progress in understanding the disease [11-17].
The cerebellum—and specifically its Purkinje cells—plays
a key role in controlling movement and posture, with
multiple animal studies implicating these cells in dystonia
pathogenesis [15, 18-29]. Dyt1 knockin mice show altered
Purkinje cell morphology [30, 31] and abnormal firing
with
activated potassium (BK) current and elevated BK channel

patterns, increased large-conductance calcium-
protein levels [32]. Most importantly, acute knockdown of
torsinA in the adult cerebellum using shRNAs induces overt
dystonia in adult mice—an effect not observed when
knockdown is performed during development or directed
to the striatum [33], suggesting the likely involvement of
cerebellar dysfunction in the pathogenesis of DYT1 and
other dystonias.

The present study aims to validate cerebellar acute torsinA
knockdown models of DYT1 dystonia. Small hairpin RNAs
(shRNAs) or small interfering RNAs (siRNAs) are known to
cause significant off-target effects that may alter the expression of
unintended genes [34]. Here, we developed an alternate acute
torsinA knockdown (AAV-cre KD) mouse model by bilateral
injection of AAV5-CMV-cre-GFP the
cerebellum of Dyt mice, with wild-type (WT) mice
receiving AAV5-CMV-GFP  as
recombination subsequently reduced torsinA expression in the

stereotaxic into

controls.  Cre-mediated
cerebellum. The motor behavior of these mice and the
electrophysiological properties of the cerebellar Purkinje cells
were characterized.

Methods
Animal

Dyt1"*""*** mice were bred and genotyped as described
previously [35, 36]. Genotyping for Dyt1”*""** mice was
performed by PCR using a set of DytlloxpF (5_-GAGGAG
AAAATAGGGGCTCAGTAT-3_), DytlloxpR (5_-GAAGGT
TGAGAAACTGCCTTAGAG-3_) primers for DytI®*. All
experiments were carried out by investigators blind to the
genotypes and treatment, in compliance with the USPHS
Guide for Care and Use of Laboratory Animals, and approved
by the IACUC at the University of Florida. The mice were housed
with ad libitum access to food and water under 12 h light
and 12 h dark.
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Stereotaxic injection of AAV

AAV5-CMV-cre-GFP (#105545-AAV5) and AAV5-CMV-
GFP (#105530-AAV5) were purchased directly from Addgene.
Stereotaxic administration of AAV5-CMV-cre-GFP and AAV5-
CMV-GFP was performed on 5- to 7-month-old male
Dyt1""* mice and WT mice under anesthesia using a
mixture of O, and isoflurane (dosage 4% for induction, 1.5%
Mice bilateral
intracerebellar injections (two sites/hemisphere) of virus

maintenance),  respectively. received
diluted in Lactated Ringer’s solution (Hospira, Lake Forest, IL;
four injections per cerebellum). For each injection, 2 pL volume
was delivered to the medial or lateral cerebellar nucleus at a
0.1 uL/min infusion rate using a 10-uL Hamilton syringe (BD,
Franklin Lakes, NJ) retrofitted with a glass micropipette. One
minute after the infusion was completed, the micropipette was
retracted 0.3 mm and allowed to remain in place for 4 min before
complete removal from the mouse brain. Anterior-posterior and
medial-lateral coordinates were calculated from the bregma, and
the dorsal-ventral coordinates were calculated from the dural
surface. These measurements were made on an experimentally
determined flat skull, following the previously described
protocol [37].

Immunohistrochemistry

Adult male WT mice injected with AAV-CMV-GFP were
euthanized and perfused with ice-cold 0.1 M phosphate buffer
(PB; pH 7.4) followed by 4% paraformaldehyde in 0.1 M
phosphate-buffered saline (PBS; pH 7.4). The brains were
incubated with the fixative overnight and then with 30%
sucrose in 0.1 M PB until the brain sank. The brain was
embedded in OCT medium, and sagittal sections (20 pm)
were collected by a Cryostat Freezing Microtome.

The brain sections were washed three times in 10 mM
glycine/0.1 M PB for 5 min each and blocked in 2% gelatin/
0.1 M PB for 15 min, 10 mM glycine/0.1 M PB for 5 min, and
0.1% BSA/0.1 M PB for 5 min. The blocked slices were incubated
in Anti-GFP chicken polyclonal primary antibody (GFP-1020,
Aves Labs; 1:2500 dilution) in 1% BSA/0.1 M PB for 2 h and
washed in 0.1% BSA/0.1 M PB for 5 min each, six times. The
sections were then incubated with Alexa Fluor® 488 AffiniPure®
Donkey Anti-Chicken IgY (IgG) (H + L) (Jackson
ImmunoResearch, code no. 703-545-155, 1:800 Dilution) in
1% BSA/0.1 M PB for 2 h and then washed in 0.1% BSA/
0.1 M PB for 5 min each, six times. The slices were mounted
on glass slides using Vectashield Hard Set mounting medium for
fluorescence (Vector Lab Inc., H-1000), covered with a cover
glass, and stored at 4 °C overnight for subsequent imaging using a
fluorescent microscope.

Images were acquired using a Keyence BZ-X810 fluorescence
microscope equipped with a CCD detector. A x4 objective lens
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(numerical aperture 0.13; working distance 16.5 mm; plan field
flatness) was used for imaging. Whole-section images were
generated using the Keyence image-stitching program, and
image performed with the BZ-X800

analysis ~ was

Analyzer software.

Western blot

Thirteen weeks after AAV injection, 7 AAV-injected
Dyt1*"® mice and 3 Dyt1™”* control mice were
euthanized, and the brains were harvested for Western blot as
described [38]. Protein lysates were prepared and homogenized
in an SDS-based lysis buffer. Samples were run on SDS-PAGE gel
(BioRad) and transferred to Millipore Immobilon-FL PVDF
membrane. Membranes were blocked and subsequently
incubated with primary torsinA antibody (Abcam 34540, I:
300), B-tubulin (Santa Cruz sc-9935, 1:14,000) overnight,
followed by the secondary antibody donkey anti-rabbit 680
(LICORbio 926-68073 1:15,000) or donkey anti-goat 800 CW
(LICORbio 926-33214 1:15,000) for 2 h. After washing and
drying the membranes, the signals were analyzed using LI-
COR Odyssey imaging system.

Motor behavior assessment

The presence of dystonia and its severity were quantified
using a previously published scale [33, 39]. Briefly, 0 = normal
behavior; 1 = abnormal motor behavior, no dystonic postures;
2 =
disturbed; 3 = moderate impairment, frequent spontaneous

mild motor impairment, dystonic-like postures when

dystonic postures; 4 = severe impairment, sustained dystonic
postures. Seven AAV-injected DytI"**"**" mice and eight AAV-
injected WT control mice were assessed by the dystonia scale at 3,
5,7, 9, 11, and 13 weeks after injection, respectively. During
routine handling in the later phase of the experiment, a severe
spinning behavior was unexpectedly observed in a subset of KD
mice. To characterize this emergent phenotype, the tail hang test
[40] was performed and was systematically video-recorded just
before euthanasia. These videos were subsequently analyzed
frame by frame in a post hoc manner to quantify their
features, including latency to onset, duration, and rotational
speed (defined as rotations per second, RPS).

Electrophysiology

Thirteen weeks after AAV injection, 5 AAV-injected
Dyt1?" mice and 3 Dyt1™""* control mice were
the
electrophysiology study. The brains were rapidly removed and

euthanized, and brains were  harvested for

briefly chilled in the ice-cold cutting solution containing (in mM)
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180 sucrose, 2.5 KCl, 1.25 NaH,PO,, 25 NaHCOs;, 1 CaCl,,
10 MgCl,, and 10 D-glucose and were oxygenated with 95% O,-
5% CO, (pH 7.35~7.45). Parasagittal 300 um-thick cerebellar
brain slices were cut with a Vibratome (LEICA VT 1000S, Leica
Microsystems, Wetzlar, Germany) in the same ice-cold cutting
solution. Slices were first incubated on a brain slice keeper
(AutoMate Scientific, Inc. Berkeley, CA) and covered by a
thin layer of artificial cerebrospinal fluid (ACSF) containing
(in mM) 126 NaCl, 2.5 KCl, 1.25 NaH,PO,, 25 NaHCO»,
2 CaCl,, 2 MgCl,, and 10 D-glucose. They were constantly
oxygenated at 35 °C for 60 min. After a minimum of 60 min
of incubation, a slice was transferred to a submerged recording
chamber with a continuous flow (1.5 mL/min) of
oxygenated ACSF.

The spontaneous firing properties of the Purkinje cell were
measured by cell-attached patch-clamp recording in brain
slices as described [32, 41-45]. The Purkinje cells located in
the apex and bank of the cerebellar vermis lobules 4 to 6 were
identified by infrared visualization in parasagittal cerebellar
slices. Lobules 4 to 6 were selected because they receive inputs
from the hind limbs. The spontaneous action potentials were
recorded by the voltage clamp with cell-attached mode,
infrared-differential interference contrast microscopy (IR-
DIC) with video microscopy (Axioskop-FS; Carl Zeiss, Jena,
Germany), a 40x water-immersion lens, and an Axopatch 1D
amplifier (Axon Instruments, Foster City, CA). The patch
electrodes had a resistance of 5-10 MQ when filled with a
K-gluconate-based intracellular solution containing (in mM):
112.5 K-gluconate, 4 NaCl, 17.5 KCl, 0.5 CaCl,, 5 MgATP,
1 NaGTP, 5 EGTA, 10 HEPES, pH 7.2 (osmolality
270-280 mOsm/l). Positive pressure was applied to the
patch electrode as it approached the Purkinje cell. Suction
was applied to the electrode to create a seal (>5 GQ) between
the recording pipette and the cell membrane. Action potential
current was recorded in the current-clamp mode that
maintained an average of 0 pA holding current. To isolate
the intrinsic activity, we added picrotoxin (10 pM), CGP55845
(1 uM), and kynurenic acid (5 mM) to the ACSF to block
synaptic transmission.

The intrinsic activity was assessed by whole-cell recording.
After breaking through the cell membrane, access resistance was
maintained throughout at <25 MQ. The action potential for the
current step recording was triggered by depolarizing the current
steps by 300 ms. All experiments were maintained at 35 °C +
0.5 °C by adjusting the temperature of the bathing solution using
Warner TC-344B Dual Automatic Temperature Controller
Holliston, MA). Cell-attached and
whole-cell recordings were obtained from Purkinje cells using

(Warner Instruments,

Axopatch 1D Amplifier (Molecular Devices). The recording data
were acquired using pClamp 10 software, and the signals were
filtered at 5 kHz and digitized at 10 kHz using a DigiData 1440
(Molecular Devices). Cell firing activity was further analyzed by
the Mini Analysis Program (Synaptosoft).
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FIGURE 1
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Dyt1 loxP homozygous mouse AAV5-CMV-Cre-GFP
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(A) Strategies to knock down torsinA in the cerebellum of adult mice using the cre-loxP system. Numbers represent the exons of the Dyt or
Torla gene, and the open triangles indicate loxP sequences inserted into the introns. (B) Strong GFP expression was observed in the cerebellum of the
WT mice injected with AAV5-CMV-GFP. Sagittal sections were displayed. The left image was captured with a Keyence BZ-X810 microscope using
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FIGURE 1 (Continued)

10.3389/dyst.2026.14631

both regular and fluorescent lights and merged together. The stitched image on the right was captured by a Leica confocal microscope, and the
contour of the cerebellum is outlined. (C) TorsinA protein expression levels were reduced in AAV-cre KD mice. Western blot and quantification
showing a reduction in torsinA expression in cerebellar lysates from AAV-injected animals (AAV) compared to control mice (CT). Molecular marker
locations are indicated on the left. TorsinA KD was reduced by 51% + 11% (Mean + S.E.M, torsinA KD n = 7; control n = 3). *p < 0.05.

Statistics

The Western blot signals were analyzed using the Student’s
t-test. Electrophysiological recording data were analyzed using
the SAS/STAT mixed model for normally distributed data or
GENMOD procedures when they were not normally distributed,
with a log link for gamma distribution and a GEE model for
repeated measurements. The statistical power was estimated
using 1,000 simulations with a similar GENMOD model. The
recorded neurons were nested within each animal. The age was
used as a covariate in all electrophysiological analyses. Dystonia
scores were evaluated using the SAS GENMOD procedure with a
multinomial distribution, a cumulative logit link function, and a
GEE model for repeated measurement. Significance was assigned
at p < 0.05.

Results

The strategies used to knock down torsinA in the cerebellum
are shown in Figure 1A. Instead of shRNA targeting torsinA
mRNA, we took advantage of the cre-loxP system and the floxed
Dyt1 locus we developed earlier [35]. We used an AAV virus
expressing Cre and GFP under the control of a general promoter,
CMV. GFP was included to assess the efficiency of AAV
transduction. Under UV light, strong fluorescent signals were
observed in the cerebellum of AAV-injected mice (Figure 1B),
confirming widespread AAV transduction. The effect of Cre-
mediated recombination was assessed indirectly through a
Western blot analysis of torsinA protein levels. Western blot
showed a significant decrease in torsinA expression level in the
cerebellar lysates of AAV-transduced animals compared to
control mice (Figure 1C). In contrast, the levels in the
cerebral cortex, brainstem, and striatum were unaffected
(Supplementary Figure S1), suggesting successful inactivation
of the endogenous DytI gene specifically in the cerebellum.

We observed the home cage behavior to determine whether
the knockdown of torsinA resulted in overt dystonia
(Supplementary Video S1). The presence of dystonia and its
severity were assessed using a previously published Dystonia
scale [33, 39]. Briefly, 0 = normal behavior; 1 = abnormal motor
behavior, no dystonic postures; 2 = mild motor impairment,
when disturbed; 3 =
impairment, frequent spontaneous dystonic postures; 4 =

dystonic-like postures moderate

severe impairment, sustained dystonic postures. The KD mice
showed overt dystonia in five out of seven mice within 9 weeks, as
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evidenced by abnormal hindlimb postures (Figure 2A) and
increased overall dystonia scores in the KD mice (x> = 7.55,
p = 0.006, Figure 2B). In addition to these general dystonic
postures, a distinct and dramatic phenotype emerged in three of
the five dystonic mice. This behavior was most clearly observed
and captured on video during the later stages of the experiment,
as the animals’ general dystonia scores reached their peak
severity. These mice exhibited recurrent episodes of vigorous,
bidirectional spinning, particularly upon tail suspension
(Supplementary Video S2). To provide a rigorous analysis, we
quantified this behavior from the video recordings. The onset of
spinning was remarkably rapid, with a latency of less than one
second. The behavior was forceful and sustained; in the two most
severely affected animals, the rotational speed reached up to
5.4 rotations per second (RPS), and the spinning bouts
consistently lasted for more than 10 s. The third affected
mouse displayed a similar but milder spinning phenotype.
None of the WT control mice injected with an AAV5-CMV-
GFP virus exhibited these
Videos S3, S4).

To contextualize these findings, we statistically compared the

phenotypes  (Supplementary

penetrance of overt dystonia in our AAV-cre KD model (71.4%,
5/7 mice) with established models. This penetrance rate is
significantly higher than that reported in constitutive Dytl
AGAG knock-in mice [6, 7], which typically exhibit no overt
dystonia (0%; p < 0.01, Fisher’s exact test). Furthermore, the high
penetrance in our model is comparable to that observed in acute
cerebellar shRNA knockdown models (p > 0.05) [33], supporting
the validity of acute cerebellar suppression of torsinA in
recapitulating motor symptoms.

To determine the effect of torsinA KD on Purkinje cell firing,
we measured spontaneous firing and intrinsic excitability of the
Purkinje cell in acute brain slices. Cell-attached recording of
Purkinje cells revealed a 27% decrease in spontaneous firing
frequency (control: 19 cells/3 mice; KD: 29 cells/5 mice; p = 0.04;
statistical power = 1.0; Figures 3A,B) while coefficient of variation
0.55; Figure 3C).
Decreased spontaneous firing in KD mice is consistent with

(CV) was not significantly altered (p =

our earlier finding in Dyt1 knockin mice [32].

Depolarizing current steps were injected into the Purkinje
cell of KD and control mice to assess intrinsic excitability. We
injected a brief, positive current into the cell, which causes the
membrane potential to become more positive, or depolarized.
The action potentials produced are indicative of intrinsic
excitability. KD mice exhibited 27% fewer action potentials
than controls (p = 0.0004, Figures 3D-G). Decreased intrinsic
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FIGURE 2

10.3389/dyst.2026.14631

Overt dystonia phenotypes in AAV-cre KD mice. (A) Mouse #2 at 9 weeks after the injection of AAV-cre exhibited an abnormal hindlimb posture
(arrow), scale bar = 1 cm. (B) The dystonia scoresat 3, 5,7, 9, 11, and 13 weeks after injections, and the injection day at O weeks are plotted for each AV-
CMV-GFP-injected control mouse (blue; animal ID 8-15; n = 8) and AAV-CMV-Cre-GFP-injected KD mouse (other colors; animal ID 1-7; n = 7).

excitability indicated that the KD Purkinje cells would be less
likely to fire action potentials, which could explain the decreased
spontaneous firing frequency.

Discussion

We developed an alternate torsinA KD model to validate
whether cerebellar torsinA KD can be a robust dystonia
phenotypic model. Using the cre-loxP system-based approach,
we observed overt dystonia in 5 out of 7 mice, similar to the
shRNA KD model [33]. None of the 8 WT mice injected with
AAV5-CMV-GFP showed overt dystonia, supporting that these
symptoms are specific to torsinA knockdown rather than
artifacts of the viral vector or surgery. Dytl knockin mice
show altered Purkinje cell morphology [30, 31] and abnormal
spontaneous firing, with increased BK current and elevated BK
channel protein levels [32]. BK channels have been implicated in
dystonia [46-49]. Together, these results support a key role of the
cerebellum in DYT1 dystonia. However, 3 of the 5 dystonic
AAV-cre KD mice showed circling or spinning phenotype, which
is not reported in the shRNA KD mice [33] and question the
validity of cerebellar torsinA KD mice to model DYT1 dystonia.

Our KD mice and the previous shRNA KD mice show overt
dystonia, supporting a key role of the cerebellum in
DYT1 pathogenesis. In contrast, models with conditional
torsinA knockout (pKO) or mutant knockin (Pcp2-KI) in
Purkinje cells show better motor performance [50, 51]. The
discrepancy may result from developmental compensation, as
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shRNA-mediated torsinA KD in young mice does not lead to
overt dystonia [33]—or from the involvement of granule cells
and deep cerebellum nuclei, which are affected in the KD models
but spared in pKO and Pcp2-KI mice. Notably, during
development, conditional knockin of AGAG mutation in the
mouse cerebellum with engrailed1-Cre (Enl Cre) does not
produce overt dystonia [4]. Future studies should use Enl-
creERT1 [52] or Pcp2-creERT2 [53] lines to inducibly knock
out the DytI gene in adult mice to resolve these discrepancies.

Although both AAV-cre KD mice and shRNA KD mice
the
DYT1 pathogenesis, it remains unclear whether dystonia

support an essential role for cerebellum in
originates in the cerebellum. For example, Pcp2-KI mice
showed normal Purkinje cell firing [41] in contrast to the
global Dyt1 knockin mice [32], suggesting that the cerebellum
may act as a downstream node rather than the origin of dystonia.
The Purkinje cell abnormality in DytI KI mice [32] likely
originated from the striatum [41], and the overt dystonia in
acute KD mice supports the idea that the cerebellum functions as
a node downstream of the striatum via a disynaptic pathway
linking these two structures [54]. Remarkably, conditional
knockout of torsinA in the striatum mimics beam walking
deficits in global DytI knockin mice [7, 36, 38], whereas acute
shRNA KD in the adult striatum and globus pallidus does not
produce overt dystonia [33]. The exact role of the cerebellum and
basal ganglia in DYT1 dystonia remains to be fully delineated.

We found significantly reduced spontaneous firing in vitro in
the AAV-cre KD mice, which is consistent with the in vivo

finding from shRNA KD mice [33]. We examined further and
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FIGURE 3

Decreased activity in Purkinje cells in AAV-cre KD mice was revealed by brain slice recording. (A) Representative traces for control and AAV-cre

KD mice. (B) Comparison of the spontaneous firing frequency of Purkinje cells between AAV-cre KD and control mice. (C) Comparison of CV

(coefficient of variation) of the Purkinje cells between control and AAV-cre KD mice. (D) Injected current-evoked action potentials of a recorded
(Continued)
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FIGURE 3 (Continued)
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Purkinje cell by the whole-cell recording mode. (E) The morphology of the recorded neuron was revealed by staining with biocytin/streptavidin
Alexa Fluor 594 conjugate. Biocytin was included in the internal solution. (F) The frequency-current relationship for AAV-cre KD and control Purkinje
cells. (G) In response to current-step stimulation, Purkinje cells fired 27% fewer action potentials in AAV-cre KD mice (20 cells/5 mice) than in the

control mice (17 cells/3 mice). *p < 0.05, **p < 0.01, ***p < 0.001.

found significantly decreased intrinsic excitability of AAV-cre
KD Purkinje cells. Reduced intrinsic excitability would likely
decrease the spontaneous firing of Purkinje cells both in vivo and
in vitro. The molecular basis of reduced intrinsic excitability
remains unknown, but we reported previously that BK channel
activity was significantly increased [32], which could contribute
to the decreased intrinsic excitability. Increased BK channel
activity allows more potassium ions to move out of the cell,
making the Purkinje cells less likely to fire. The AAV-cre KD
mice are expected to reduce torsinA protein levels in other
cerebellar neurons, including deep cerebellar nuclei, granule
cells, and other interneurons. The effect of torsinA KD in
these neurons remains to be investigated. Interestingly,
aberrant outputs of glutamatergic neurons in deep cerebellar
nuclei appear to mediate dystonic movement in the Prrt2 mouse
model [55], suggesting the importance of deep cerebellar nuclear
neurons and their modulation by Purkinje cells.

We detected an unexpected bidirectional circling and
spinning behavior during tail suspension in severely affected
mice, resembling spinning behavior observed in a shRNA KD
model targeting Sgce mRNA in the cerebellum, where motor
deficits, spinning, and myoclonic-like jerky movements were
alleviated by alcohol consumption [56]. The mutation of the
SGCE gene causes myoclonus-dystonia or DYT11 dystonia [57].
The spinning behavior is unique to Sgce shRNA KD mice
compared to other models of dystonia, including torsinA
shRNA KD mice [56]. Although there is no spinning
symptom in DYT11 dystonia patients, the alcohol rescue in
the Sgce KD mice suggests that the spinning during tail
suspension related  to

may be myoclonus-dystonia

manifestation in mice, since DYT1l patients can get
temporary relief by alcohol ingestion [58-60].

It is interesting that both Sgce ShRNA KD and AAV-cre KD mice
showed spinning behavior. e-sarcoglycan, the product of the Sgce
gene, is known to interact with torsinA. TorsinA binds to mutant &-
sarcoglycans and promotes their degradation [61]. Mutant mice with
double mutations in the torsinA gene and Sgce show an earlier onset
of motor deficits [62]. The common pathway affected in Sgce ShRNA
KD and AAV-cre KD mice remains to be determined.

On the other hand, vertigo, dizziness, and imbalance are
associated with lesions of the vestibulo-cerebellar, vestibulo-
[63]. Acute

knockdown of torsinA and Sgce might have damaged some of

spinal, or cerebellar ocular motor systems
these systems, leading to the spinning behaviors in these mice. In
the torsinA and Sgce KD mice without spinning behavior, it is

plausible that vestibulo-cerebellar and cerebellar ocular motor
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system impairments exist, which may contribute to imbalance
or even overt dystonia in torsinA and Sgce KD mice. Future
research should explore localized or refined cerebellar AAV
manipulations to avoid perturbations to the vestibulo-cerebellar
and cerebellar ocular motor systems. It will also be interesting to
study how vestibulo-cerebellar and cerebellar ocular motor system
dysfunction contributes to dystonia pathogenesis and treatment.
Vestibular dysfunction has been linked to focal or cervical dystonia
[64-68]. A patient develops cervical dystonia soon after ear surgery
that causes vestibular hypofunction [69]. Another report detailed an
idiopathic cervical dystonia patient with benign paroxysmal
positional vertigo [70]. To our knowledge, there are no reports
of vestibular dysfunction in DYT1 and DYT11 dystonias, therefore,
the acute torsinA and Sgce KD models may not accurately represent
DYT1 and DYTI11 dystonias. This is the major weakness of the
current study and the use of acute gene KD models in dystonia
research in general. Additionally, while our analysis of the spinning
phenotype provided valuable data on its severity, a prospective
study designed to systematically track the emergence and
progression of this specific behavior from earlier time points
would be necessary to understand its relationship with the
overall dystonia pathology fully. Additional limitations include
the fact that acute KD of torsinA in adults does not occur in
DYT]1 patients, and recent studies have pointed to a developmental
origin of DYT1 dystonia [71-73]. This underscores the need for
transgenic models with developmental genetic manipulations to
replicate the human condition more accurately.
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