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Gastric cancer remains a highly prevalent and accounts for a notable 

proportion of global cancer mortality. Both Intrinsic and exogenous 

agents can exacerbate reactive oxygen species (ROS) related oxidized 

DNA base lesions and single stranded DNA breaks (SSBs). Base excision 

repair (BER) serves as the primary defense mechanism for repairing DNA 

damage induced by oxidative stress. DNA polymerase beta (Pol β) plays a 

critical role in BER and non-homologous end joining repair pathways. The 

Pol β is the first perform gap-filling DNA synthesis by its polymerase activity 

and then cleave a 5′-deoxyribose-5-phosphate (dRP) moiety via its dRP 

lyase activity. Furthermore, defect in POLB promotes genetic liability of the 

cancer cells for different targeted and synthetic lethality-based 

treatment strategies. In this review, we have provided a potential 

example to illustrate the mechanistic insight how PARP1 inhibitor 

(Olaparib) induces replication associated double strand breaks in POLB 

deficient cells and DNA mediated innate immune signal activation that 

likely enhances immune based therapy. Based on our previously published 

data and the current recent findings, POLB status of the patient likely 

provide genetic indicators to stratify gastric cancer patient. Overall, in this 

review article, we presented a new direction to highlight the opportunity to 

exploit POLB genetic defect in cancer cells to enhance treatment response 

and to explore synergistic effect to target gastric cancer cells that harbor 

aberrant DNA polymerase beta function with immune based therapeutic 

strategy.
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Introduction

DNA is vulnerable to different environmental agents such as 
ultraviolet light, ionizing radiation (IR), chemicals, toxins and 
pollutants [1–3], as well as to endogenously generated alkylating 
agents and reactive oxygen species [4]. The major source of 
endogenous DNA damage is reactive oxygen species (ROS) 
generated from normal cellular metabolism [5]. ROS induces 
different forms of DNA damage, including oxidized DNA bases, 
abasic sites, SSBs and DSBs [6]. To avoid the deleterious 
consequences of DNA damage accumulation, cells employ DNA 
repair mechanisms to fix damaged DNA [7]. Multiple DNA repair 
pathways have evolved, each associated with repairing specific types 
of lesions [8, 9]. Oxidized DNA base lesions and single stranded 
DNA breaks (SSBs) are primarily repaired by the base excision 
repair (BER) pathway [10]. BER plays a critical role in repairing up 
to 20,000 endogenous DNA lesions per cell per day [11–13]. The 
two main BER pathways are short-patch (SP) or long-patch (LP) 
repair, which occur following completion of DNA end-processing 
[14, 15]. The canonical short-patch pathway of BER proceeds by 
filling of the single-nucleotide gap with sequential removal of 5′- 
deoxyribose phosphate by 5′-deoxyribose phosphate (dRP) lyase 
activity and incorporation of nucleotide via the nucleotidyl 
transferase activity of DNA polymerase β (POLB). Finally, the 
single-strand break is sealed by the activity of DNA ligase IIIα 
(LigIIIα) in complex with XRCC1. However, LP-BER usually 
involves strand displacement synthesis with insertion of up to 
10 nucleotides in length. While there is evidence that Pol β can 
function in LP-BER [16, 17].

Several other studies including our work have shown that 
BER is essential for preventing gastric cancer induced by 
spontaneous or exogenous risk factors [18]. However, 
numerous genetic germline variants and somatic mutations of 
genes involved in BER significantly modulate the risk of cancer 
and treatment response [19–21]. The following section of the 
manuscript provide the substantial evidence regarding the 
structure and function of POLB to maintain genomic integrity 
of the cells.

POLB structure and function

POLB is one of Type-X family of mammalian DNA 
polymerase and composed of two specialized domains. The 
smaller 8 kDa N-terminal domain contains the 5′-deoxyribose 
phosphate (dRP) lyase activity, and the 31 kDa C-terminal 
domain contains the polymerase activity responsible for DNA 

synthesis. The 31 kDa polymerase domain is composed of 
fingers, palm, and thumb subdomains, which are arranged to 
form catalytic, DNA binding, and N subdomains (nascent base 
pair binding) reflecting their intrinsic functional roles [22]. The 
catalytic subdomain coordinates two divalent metal cations that 
assist the nucleotidyl transferase reaction, whereas other 
subdomains have critical roles in binding to duplex DNA and 
nascent base pair (dNTP and templating nucleotide) and are 
spatially situated on opposite sides of the catalytic subdomain. 
The DNA polymerase structures that bound to DNA including 
the incoming complementary dNTP reveals that the N 
subdomain repositions itself to “sandwich” the nascent base 
pair between the growing DNA terminus and the polymerase 
[23]. These enzymatic functions represent two essential steps 
during the base excision repair (BER) pathway, which is 
responsible for excision and replacing incorrect as well as 
damaged bases generated from endogenous as well exogenous 
DNA damaging agents [24, 25].

Aberrant POLB is associated with 
genomic instability and cancer

DNA polymerase beta (POLB) is one of the key player in BER 
and participates in short and long-patch repair BER pathways [26]. 
Previous studies demonstrated that POLB is mutated in 40% of 
human tumors and likely contribute to tumorigenesis through 
genomic instability [21, 27]. Additionally, in vitro and in vivo 
studies have shown that mutation in the polymerase domain of 
POLB or complete deletion of the POL B gene causes genomic 
instability in mitotic and meiotic cells, respectively [28, 29]. Eight 
percent of POLB mutations occur in the dRP lyase domain [21, 30]. 
The dRP lyase function of POLB plays a major significant role in 
removal of the 5′-dRP group than any other DNA polymerase [31, 
32] and protects cells from DNA damage-induced cytotoxicity [33]. 
POLB is the primary enzyme responsible for processing the 1-nt 
gap intermediate in chromatin during SSBR and BER. Single-strand 
breaks (SSBs) are one of the most prevalent forms of genomic DNA 
damage, occurring tens of thousands of times per cell per day [12]. 
If left unrepaired, SSBs can result in mutagenesis, genome 
instability, and/or cell death [34–36]. To protect the genome, the 
cell possesses robust single-strand break repair (SSBR) pathways to 
identify, process, and repair SSBs that arise from various 
endogenous and exogenous sources [37]. One common 
mechanism for the generation of SSBs is through decomposition 
of the sugar-phosphate backbone via oxidation [38], which requires 
subsequent DNA end processing prior to being repaired directly by 
the SSBR pathway [39]. SSBs can also form indirectly via the base 
excision repair (BER) pathway, which is responsible for repairing 
oxidative and alkylative base damage [38]. These indirect SSBs arise 
through the enzymatic activity of bifunctional DNA glycosylases or 
the combined action of a monofunctional DNA glycosylase and 
AP-endonuclease I (APE1) that creates a 3ʹ-hydroxyl and 5ʹ- 

Abbreviations: BER, Base excision repair; 5′-dRP, 5′-deoxyribose-5- 
phosphate; PARP1, Poly [ADP-ribose] polymerase 1; SSBs, Single 
stranded DNA breaks; DSBs, Double strand breaks; ROS, Reactive 
oxygen species; POLB, DNA polymerase beta.
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deoxyribosephosphate (dRP) nick termini. This substrate is 
subsequently processed by the AP-lyase activity of POLB 
creating a 1-nt gap [40, 41]. However, several studies also shows 
that mutation in the coding region of POLB affect their structure 
and activity. For instance, mutation in the Polymerase domain of 
POLB such as E295K, R137Q does not possess any polymerase 
activity or low polymerase activity respectively [42–45]. 
Additionally, mutation in POLB at T304I results in the loss of 
interactive partner such XRCC1 to handle the DNA damage repair 
suggesting that it will not be scaffolded properly during BER, likely 
leading to a deficiency in gap filling [46]. Overall, the mutation 
within the polymerase domain impacts the overall polymerase 
activity due to the altered DNA substrate binding or positioning 
of the incoming dNTP or delayed release of the DNA after binding, 
consequently leading to cellular phenotypes.

Exploiting POLB for cancer therapy

Clinical studies have also been carried out to investigate the 
association between aberrant BER and cancer. According to the 
Cancer Genome Atlas (TCGA) database, mutations of BER genes 
are common in various cancer types. POLB has been found to 
harbor mutations in up to 30%–40% of human tumors [21]. 
Previous studies have shown a correlation between single 
nucleotide polymorphisms (SNPs) of the POLB gene and the 
risk to develop various cancers [21, 47]. To increase efficiency 
and lower the burden of undesirable effects, a major change in 
cancer therapy is a potential transition from a ‘one-drug-fits-all’ 
to an individualized treatment approach tailored to the tumor- 
specific molecular features. For the last 2 decades, there are two 
main targeted therapeutic strategies proposed and are currently 
utilized in cancer treatment, both exploiting cancer-specific 
genetic and metabolic vulnerabilities. In the first approach, 
therapeutic suppression of aberrantly upregulated oncogenes 
alleviates the growth advantage of cancer cells. The second 
approach is based on the phenomenon that genetic alterations 
acquired by tumor cells cause their dependency on other 
compensatory pathways, loss of which leads to synthetic 
lethality. Therefore, therapeutic inhibition of pathways that 
are synthetic lethal with a cancer-specific alteration evokes 
cellular death in tumor cells while leaving normal cells 
unharmed [48]. The recent advent of genome-wide genetic 
interaction studies has demonstrated the extensive number of 
synthetic lethal interactions in cancer, many of which can 
potentially be translated to targeted cancer therapies [49].

Synthetic lethality in POLB variant 
in cancer

Previous studies have uncovered the significance of synthetic 
lethality interactions between parallel DNA repair pathways in 

clinical settings [50, 51]. Targeting PARP1 [Poly(ADP-Ribose) 
Polymerase 1] for synthetic lethality in preclinical model and 
clinical setting is therapeutic strategy and approved for patient 
treatment for several types of cancer. However, not all patients 
respond due to intrinsic or acquired resistance to 
PARP1 inhibitor. Dysregulation of POLB is likely a potential 
genetic liability for cancer cells to enhance sensitivity for 
treatment. We have examined the following two interactive 
scenarios across distinct pathways. The first scenario describes 
the impact of POLB dysregulation and MMR deficiency on 
cancer cells survival (Figure 1). Some studies have shown that 
mismatch repair deficient acute lymphoblastic leukemia cells 
more dependent on POLB-mediated BER pathway to 
counteract the cytotoxic effects of thiopurine [52]. 
Additionally, treatment of MMR-deficient cells with 
APE1 inhibitor in combination with thioguanine caused the 
accumulation of BER intermediates such as AP sites providing 
mechanistic insight BER’s role in repairing thioguanine induced 
DNA lesions in the absence of MMR [53]. Overall, this data 
suggests a potential therapeutic strategy of targeting BER key 
factor POLB against MMR-deficient ALL based on synthetic 
lethality [54, 55].

The second scenario is based on the genetic liability of POLB 
in HR deficient cancer cells (Figure 1). An estimated 7%–12% of 
gastric cancers exhibit a mutational signature associated with 
homologous recombination (HR) failure [56], suggesting that 
these patients could potentially benefit from PARP inhibitor. Pol 
β as a synthetically lethal target within BRCA1-deficient cells and 
a potentially useful one for treating cancer [57]. Additionally, 
recent study has shown that CRISPR-based target discovery 
screening identified DNA polymerase beta (POLB) as a 
synergistic enhancer of the synthetic lethality between PARP 
and BRCA1/2, supporting POLB as a promising therapeutic 
target for improving antitumor responses to PARP inhibitors 
in homologous recombination–deficient cancers [58, 59]. 
Moreover, the following section of this manuscript provides 
two alternative therapeutic strategy to target the genetic 
vulnerability of dRP lyase deficient cancer.

Targeting PARP1 in dRP lyase 
deficient gastric cancer cells enhance 
sensitivity

Development of alternative synthetic lethality approaches is a 
high priority. DNA polymerase β (Polβ), a critical player in base 
excision repair (BER), interacts with PARP1 during DNA repair. 
The 5′-dRP activity of POLB is critical for the formation of repair 
products since the removal of the 5′-dRP group is considered to 
be a rate-limiting step in short patch BER and is required for 
ligation of the BER intermediates after gap-filling by a 
polymerase [60, 61]. Deficiency of 5′-dRP lyase activity of 
POLB, or the entire POLB gene, leads to increased sensitivity 

Journal of Pharmacy & Pharmaceutical Sciences 
Published by Frontiers 

Canadian Society for Pharmaceutical Sciences 03

Shahi et al. 10.3389/jpps.2025.15360

https://doi.org/10.3389/jpps.2025.15360


to DNA-damaging agents [33], genetic instability [62], and 
neonatal lethality [63] respectively. Given the high number of 
somatic mutations identified in POLB gene, we studied L22P 
mutation in carcinogenesis using in vitro and genetic tools. L22P 
was discovered as a gastric cancer-associated variant of POLB 
[64]. The L22P variant maps to the 8 kDa lyase domain, which is 
responsible for the removal of the 5′dRP group. Previous finding 
showed that the L22P variant retains DNA polymerase activity, 
but lacks dRP lyase and has less DNA-binding affinity in vitro 
[65]. As a result, L22P is unable to support BER activity. Our in- 
vitro cell lines-based data have shown that in the absence of dRP 
lyase activity of POLB, BER intermediates trigger a rapid block in 
DNA synthesis and exert genotoxic effects toward gastric 

epithelium [66]. L22P leaves the DNA nicks due to its low 
dRP lyase activity and slower polymerase activity, then these 
nicks could accumulate in gastric epithelium and be a driver for 
gastric cancer. Previously, we investigated the biological 
significance of dRP lyase deficiency result in DNA replication 
associated genomic instability [66]. Further, we demonstrated 
that deficiency in dRP lyase in mouse model cause oxidative 
induced genetic lesions that likely predisposes to gastric cancer 
[67]. On the other hand, BER intermediates could be processed 
by alternative DNA repair pathways including non-homologous 
end joining (NHEJ) [68] or homologous recombination [68]. 
These alternative DNA repair pathways can induce chromosomal 
aberrations, eventually resulting in cellular transformation [66]. 

FIGURE 1 
Aberrant POLB induces genetic lability and synthetic lethal with MMR and HR deficient cancer cells. Cancer cells harbor MMR deficient cancer 
cells leads to accumulation of mutation associated genomic instability, neoantigen generation that potentially generate opportunity for targeting 
POLB leads to synthetic lethal and potential for immune based therapy (Left panel). Furthermore, other studies provided substantial experimental 
evidence that targeting POLB in HR deficient cancer (such as BRCA1/2) leads to double strand break associated genomic instability, activation of 
innate immune signaling and cancer cell death (right panel).
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Taken together, successful completion of BER requires both gap- 
filling synthesis and 5′-dRP excision by POLB. The genetic 
liability of cancer cells with dRP lyase deficiency likely provide 
the opportunity for precision therapeutic strategy and help also 
to stratify the patients.

PARP1 is one of the most abundant and active PARP, 
strongly activated in response to DNA damage. It synthesizes 
majority of PAR in response to genotoxic or oxidative stress [69, 
70]. PARP1 involved as a DNA nick-sensor and interacts with 
BER intermediates including 5′dRP groups to facilitate the repair 
process. Under normal physiological conditions (normal cells), 
when PARP1 binds to DNA breaks, PARP1 catalyzes synthesis of 
poly (ADP-ribose) covalently attached to itself and some nuclear 
proteins and auto poly ADP-ribosylation of PARP1 facilitates its 
dissociation from DNA breaks and is considered as a factor 
regulating DNA repair. However, in cancer cells with harboring 
mutation that able accumulate 5′dRP groups likely provide the 
opportunity of PARP1 to stay longer on the DNA substrate and 
causes genotoxicity. Our previously published work shows that 
L22P expressing cells exhibit hypersensitivity to PARP inhibitor 
treatment due to an accumulation of double-strand breaks. The 
mechanism for increased PARP inhibitor sensitivity is due to 
PARP1 interacting with the 5′dRP groups that L22P Pol β fails to 
remove and becomes trapped on the DNA causing replication 

fork stalling and DSB break formation [66]. Replication forks that 
have been stalled by trapped PARP1 collapse during S-phase 
results in DSBs [71] suggesting that L22P-expressing cells 
accumulate 5′-dRP groups, which are critical for interaction 
with PARP1. Our study confirmed that treatment with a 
PARP1 inhibitor eliminates dRP lyase deficient cells via 
trapping a PARP1- 5′-dRP group complex which suggests that 
trapped PARP1 may likely blocked replication forks that 
ultimately leads to DSBs. Further, there is also evidence the 
DNA protein crosslink formation with POLB depends on the 
enzyme’s lyase activity. Our previous experimental observation is 
in agreement with previous reports that PARP1 forms a covalent 
bond with 5′-dRP groups and blocks BER or hinders the BER 
process [72]. Therefore, PARP1 trapping and/or Pol β forming 
DPCs, likely contribute to the DNA damage accumulation 
observed in this L22P variant of POLB, demonstrating the 
importance of the lyase domain for proper POLB function 
(Figure 2). Therefore, the genetic vulnerability of cancer cells 
that harbor POLB polymorphism at dRP lyase domain or somatic 
mutation likely cause the perturbs the BER pathway and 
sensitizes cancer cells to PARP1 inhibitors. Our observation 
may imply that gastric cancer patients carrying defects in 
POLB function may be stratified for PARP1 inhibitor 
treatment, resulting in a more effective option.

FIGURE 2 
PARP1 inhibitor enhances replication dependent DSBs and sensitizes dRP lyase deficient cells. Targeting PARP1 enhances DNA damage in gastric 
cancer cells leading to significant genotoxic effects. The L22P mutation generates a 5′-dRP group, which interferes with replication by trapping 
PARP1. This results in the collapse and stalling of replication forks, ultimately causing an increase in double-strand breaks (DSBs) by inhibiting BER 
pathway. These DSBs exacerbate genomic instability that leads to cell death.
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Targeting PARP1 exacerbate DNA 
mediated innate immune signaling in 
dRP lyase deficient gastric cancer

Several studies have suggested that DNA repair factors play a 
role in modulating an inflammatory response [73, 74]. Once 
nuclear DNA integrity is compromised through a deficient 
DNA repair system or exogenous DNA damaging agents, cells 
will likely release the DNA into the cytosolic compartment and 
possibly activate STING signaling and engage an inflammatory 
response. Our published work demonstrated that a dRP lyase 
deficient variant of POLB (Leu22Pro, or L22P) spontaneously 
induces genomic instability, which eventually leads to a cytosolic 
nucleic acid mediated inflammatory response [75]. Furthermore, 
poly(ADP-ribose) polymerase 1(PARP1) inhibition exacerbates 
chromosomal instability and enhances the cytosolic DNA 
mediated inflammatory response [75]. It is well documented 
that chronic stimulation of the immune system is critical for 
tumor promotion and progression [76, 77]. One of the key 
interfaces between defective DNA repair and immunogenicity is 
the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/ 

STING) pathway [77]. The cGAS-STING pathway, which senses 
cytosolic DNA, has been linked to an anti-tumor inflammatory 
response [78]. Cytosolic double-stranded DNA is sensed by cGAS, 
leading to activation of the transmembrane protein STING and 
activation of the transcription factors interferon regulatory factor 3 
(mainly IRF3) and nuclear factor kappa B (NF-κB) followed by an 
upregulation of interferon beta (IFN-β) related genes [79, 80]. Loss 
of dRP lyase in mice stomach provided an excellent model to 
demonstrates that the interplay between aberrant BER and 
inflammation in gastric cancer [81]. Our recent work have 
shown that dRP lyase deficient POLB triggers cytosolic DNA 
mediated chronic inflammation in L22P mice STING has 
recently been identified as one of the critical adaptors for 
sensing cytosolic DNA, followed by the phosphorylation of 
IRF3 and subsequent production of type-I IFN and IL-6 [75]. 
Furthermore, the mRNA expression of interferon type-I cytokines 
significantly increased in the stomach tissues of dRP lyase deficient 
mice [75]. Our study reveals a previously unidentified role of POLB 
in regulating the cellular inflammatory response thus providing a 
potential target in a defective BER pathway to enhance an immune 
based therapy response in the future (Figure 3).

FIGURE 3 
PARP1 inhibitor induces DNA mediated innate immune signaling activation in dRP lyase deficient gastric cancer. Accumulation of unrepaired 
DNA damage in dRP lyase deficient cells likely generate cytosolic DNA to stimulate cGAS/STING pathways. Further inhibition of PARP1 blocks the 
replication forks and unresolved repair exacerbate the release of cytosolic DNA that leads to cGAS-STING activation and production of 
inflammatory cytokines.
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BER deficiency generate therapeutic 
opportunity for immune check 
point blocked

The tumor microenvironment composition including CD8 + 
T, CD4 + T, macrophages and tumor-associated fibroblasts 

relates with clinical outcomes in various cancers including 
gastric cancer [82]. Other studies have shown that DNA 
repair deficiency has been shown to be associated with 
immunogenicity in other types of cancer [83]. One such 
therapy in particular, that is, anti-programmed cell death 
protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) 

FIGURE 4 
Potential impact of dysregulated BER because of dRP lyase deficiency may enhance sensitivity to immune checkpoint blockade (ICB). The model 
demonstrates the combinatorial effect of PARP inhibitor (Olaparib) and exploiting replication stress and DNA damage to enhance immunogenicity. 
Replication fork collapse during the S phase leads to DNA damage, requiring PARP1-mediated repair via base excision repair (BER). PARP1 inhibitors 
impair BER resulting in accumulation of DNA damage and activation of cGAS/STING. This model likely implies the upregulation of PD-L1 may 
open the opportunity to be targeted by anti-PDL1 antibody to effectively treat the patients with dRP lyase deficient cancer. Figure created with 
BioRender.com.
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antibody therapy has been widely applied to treat several types of 
cancer [84, 85]. Anti-PD-1/PD-L1 antibody restores antitumor 
immune responses by disrupting the interactions between PD-1 
and its ligand, PD-L1, thereby providing effective antitumor 
effects by augmenting the body’s own immune activity against 
the tumor. However, patient responses to this treatment are 
highly variable; anti-PD-1/PD-L1 antibodies alone produce 
dramatic response rates for high responders (~5% of patients), 
whereas approximately 40% of patients show cancer progression 
despite treatment [86–88]. Experimental data suggests that 
cancer cells with multiple gene mutations (high mutational 
loads) show higher PD-L1 expression in tumor tissue [89]. In 
line with this data, other studies also support that high immune 
therapy response rates of cancers with microsatellite instability 
(MSI to anti-PD-1 therapy have been reported [90, 91]. Previous 
studies have shown that tumor infiltration by immune cells is 
linked with prognosis of gastric cancer patients [92]. 
Furthermore, several studies demonstrated that gastric cancer 
and other types of tumors harbor significant BER defects [20, 21, 
93, 94]. Exploiting those BER defect factors enhances program 
cell death ligand-1 (PD-L1) expression in cancer cells. 
Overwhelming evidence have shown that the PD-L1 level of 
expression in tumors is an important factor to influence the 
therapeutic efficacy of response of cancer patients [95, 96]. 
Furthermore, emerging evidence suggests that defects in DNA 
repair machinery led to upregulation of PD-L1 [97]. Permata 
et al. also showed that BER gene expressions are negatively 
correlated with PD-L1 expression in tumors and oxidative 
DNA damaging agents exacerbate the expression of PD-L1 
[98]. In line with this our recent publication showed that BER 
defects/low expression show high microsatellite instability 
increased neoantigen production and PD-L1 expression in 
tumors [99]. In addition, chemotherapeutic agents inducing 
DNA damage enhanced the expression of PD-L1 in many 
cancer types [100]. Furthermore, resistance to PD-1/PD- 
L1 inhibitors, whether primary or acquired, remains a 
significant challenge [101]. Therefore, there is an urgent need 
for new therapeutic strategies in clinical practice to further 
increase the efficacy of immunotherapy. Considering this 
issue, our review provides that dysregulated BER function 
likely engages the tumor immune microenvironment as a 
novel strategy to increase the sensitivity of GC to ICIs to use 
ant-PDL1 or anti-CTL4 antibody. Exploring BER deficiency 
and oxidative stress DNA damage associated upregulation of 
PD-L1expression in tumors will likely provide an additional 
immune biomarker to introduce the immune-based 
therapeutic strategy (Figure 4).

Discussion

Cancer cells frequently acquire mutations in DNA repair 
genes and respond by rewiring their DNA repair network to 

utilize compensatory pathways for survival. Dependency on 
compensatory DNA repair pathways opens room for the 
development of cancer-specific small molecule inhibitors. 
Persistent DNA damage can be genotoxic or cytotoxic for the 
cells. POLB is required to maintain genomic stability, however 
mutation associated with loss of function is a genetic lability of 
the cells and provide opportunity to enhance treatment response. 
Additionally, POLB could be a potential target for cancer cells 
that are deficient MMR and BRCA1/2 to promotes synthetic 
lethality. In this regard, we provided example that have focused 
on PARP’s role in the base excision repair (BER) pathway, to 
gauges the extent of damage and functions as a scaffold or 
stabilizer for dRP lyase deficient cells. We found that dRP 
lyase deficient cancer cells is significantly more sensitive 
towards Olaparib potentially due to DNA replication block at 
S-phase cell cycle stage (Figure 2). Overall, our study provides 
experimental evidence that PARP inhibition abrogates BER 
functionality, causing accumulation of unresolved single- 
stranded breaks (SSBs) that convert to double-stranded breaks 
(DSBs) during S phase and promotes cancer cell death. This 
result suggests that deficiency or mutations in dRP domain of 
POLB represent a potential vulnerability in cancer cells, offering 
alternative molecular target for selecting and optimizing 
precision therapeutic strategy for patients with aberrant BER. 
In addition, targeting the PARP1 likely stimulate innate immune 
signaling to promote immune based therapy in gastric cancer 
(Figures 3, 4). The advent of anti-PD-1/anti-PD-L1 has 
transformed the therapeutic landscape for GC, introducing a 
novel avenue for harnessing the immune system against tumor 
cells. The future may uncover potential mechanistic insight into 
how the DNA repair pathway modulates the innate immune 
response in terms of reprogramming the tumor 
microenvironment, restoring antitumor immunities, and 
enhancing cancer immunotherapy treatment response.
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