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Eco-friendly silver nanoparticles (eco-AgNPs) represent a promising 

convergence of green nanotechnology and precision medicine for cancer 

treatment. This minireview examines the therapeutic potential of silver 

nanoparticles (AgNPs) synthesized through eco-friendly methods using plant 

extracts and microorganisms. These eco-friendly AgNPs demonstrate 

enhanced biocompatibility and selective cytotoxicity against malignant cells. 

These nanoparticles target cancer through multiple mechanisms including 

reactive oxygen species generation, apoptosis induction, and cell cycle 

disruption. Selectivity is achieved through surface functionalization with 

targeting moieties such as antibodies and aptamers that recognize 

overexpressed tumor receptors. The integration of biomarker-guided design 

enables tumor-specific delivery by exploiting unique metabolic signatures and 

cellular markers characteristic of different cancer types. Furthermore, AgNP- 

based theranostic platforms offer simultaneous diagnostic imaging and 

therapeutic intervention, providing real-time assessment of treatment 

response and enabling personalized dosing strategies. However, clinical 

translation faces significant challenges including potential long-term toxicity, 

standardization of synthesis protocols, and regulatory approval pathways. 

Successful clinical implementation will require interdisciplinary collaboration 

to optimize nanoparticle design, establish safety profiles, and develop 

combination therapies that maximize therapeutic benefits while minimizing 

side effects. Eco-AgNPs thus offer a transformative approach to cancer 

treatment that combines environmental sustainability with precision 

targeting capabilities.
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Introduction

Precision oncology has transformed cancer treatment from 
generalized approaches to personalized strategies guided by tumor 
genetics and molecular biomarkers [1]. This paradigm maximizes 
therapeutic efficacy while minimizing adverse effects through 
targeted interventions. Nanotechnology has further advanced 
precision oncology by enabling novel drug delivery systems with 
enhanced bioavailability and tumor-specific targeting [2]. Among 
nanomaterials, eco-friendly silver nanoparticles (eco-AgNPs) are 
particularly promising, owing to their unique physicochemical 
properties and inherent antiproliferative activity [3–6]. While 
chemically synthesized AgNPs offer precise control over size and 
morphology, their reliance on toxic reducing agents (e.g., sodium 
borohydride) raises concerns about residual toxicity and 
environmental impact [7, 8]. In contrast, eco-AgNPs employ 
natural capping agents from plant or microbial extracts, such as 
Fusarium oxysporum [9] and Aeromonas caviae [10], enhancing 
biocompatibility and reducing off-target effects. This green 
synthesis approach aligns with sustainable chemistry principles, 
albeit with greater batch-to-batch variability [11]. This green 
synthesis approach aligns with sustainable chemistry principles 
while providing a versatile platform for cancer theranostics that 
balances efficacy with reduced toxicity.

Eco-AgNPs demonstrate multifaceted anticancer 
mechanisms distinct from conventional chemotherapeutics. 
Through sustained Ag+ ion release, mitochondrial disruption, 
DNA/protein interactions, and ROS generation, they induce 
selective apoptosis in cancer cells [12]. This multimodal action 
may overcome drug resistance associated with single-target 
therapies. Their biogenic capping (e.g., peptides, 
polysaccharides) not only improves stability and 
biocompatibility [13, 14] but also enables functionalization 
with targeting ligands (antibodies, aptamers) for biomarker- 
specific delivery [15]. While protein corona formation in 
biological fluids presents challenges, it also offers 
opportunities to engineer cellular interactions for enhanced 
therapeutic outcomes [16].

This mini-review critically evaluates eco-AgNPs as precision 
oncology tools, examining their anticancer mechanisms, targeted 
functionalization strategies, and biomarker-driven applications. 
We discuss key challenges in therapeutic translation, 
emphasizing their potential to address tumor heterogeneity 
while minimizing systemic toxicity. By connecting mechanistic 
understanding with clinical realities, this analysis highlights eco- 
AgNPs’ emerging role in personalized cancer therapy.

Mechanisms of action of eco-AgNPs 
in cancer therapy

Eco-friendly silver nanoparticles (eco-AgNPs) exert their 
anticancer effects through a multifactorial approach, engaging 

multiple cellular pathways simultaneously. This multi-pronged 
attack represents a key advantage, as cells with deficient DNA 
repair mechanisms show increased sensitivity to AgNPs 
compared to cells with intact repair systems [17]. 
Nanomaterial, such as eco-AgNPs, enter cancer cells primarily 
through endocytosis, bypassing drug efflux pumps responsible 
for multidrug resistance [18]. Their passive accumulation in solid 
tumors is facilitated by the enhanced permeability and retention 
(EPR) effect, a foundational principle of nanomedicine that 
provides an initial layer of tumor specificity. Once 
internalized, eco-AgNPs are trafficked to acidic organelles like 
lysosomes, where the low pH environment promotes their 
dissolution and the sustained release of highly reactive silver 
ions (Ag+) [19]. These ions, along with the nanoparticles 
themselves, then initiate a cascade of cytotoxic events.

The primary mechanism of eco-AgNPs across different 
cancer types involves the robust generation of reactive oxygen 
species (ROS), including superoxide anions and hydroxyl 
radicals, leading to oxidative damage of lipids, proteins, and 
DNA [12, 20]. Notably, eco-AgNPs demonstrate potent cytotoxic 
efficacy, with reported IC50 values as low as 5.44 μg/mL against 
MCF-7 breast cancer cells [21]. This inherent anticancer activity 
is significant, as it can be achieved without conjugation to 
conventional chemotherapeutics. For context, some chemically 
synthesized AgNP-drug delivery systems, such as those 
conjugated with 5-fluorouracil (5FU), have reported higher 
IC50 values (e.g., 23.006 μg/mL in the same cell line), which 
underscores the powerful standalone potential of certain 
ecofriendly nanoparticle formulations [22]. This counter- 
intuitive finding suggests that covalent conjugation of 
chemotherapeutics might occasionally alter the nanoparticle’s 
physicochemical surface properties-specifically the bio-corona- 
potentially hindering cellular uptake or modifying the release 
kinetics of silver ions compared to the pristine, biologically 
capped eco-AgNP. This therapeutic efficacy of eco-AgNPs is 
attributed to their naturally derived bio-corona, which not only 
enhances biocompatibility and reduces off-target toxicity but also 
facilitates more efficient cellular internalization and sustained 
intracellular silver ion (Ag+) release. The resulting enhanced ROS 
generation is particularly relevant to precision oncology, as 
cancer cells often have compromised antioxidant systems and 
lower total antioxidant capacity [23], making them selectively 
more susceptible to ROS-inducing agents compared to healthy 
cells [21, 24]. This vulnerability arises because cancer cells 
typically operate under higher basal oxidative stress due to 
accelerated metabolism (the Warburg effect), leaving them 
with a depleted antioxidant reserve compared to normal 
tissues. A key consequence of this oxidative stress is the 
specific targeting of mitochondria. Eco-AgNPs disrupt the 
mitochondrial membrane potential and uncouple the electron 
transport chain, triggering the release of pro-apoptotic factors 
such as cytochrome c into the cytoplasm [12]. This subsequently 
activates initiator and executioner caspases (e.g., caspase-3, -7, -8, 
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-9), initiating the intrinsic apoptotic pathway and leading to 
programmed cell death [25]. Concurrently, eco-AgNPs induce 
significant genotoxicity by causing DNA double-strand breaks 
and interfering with replication and repair mechanisms. This 
activates cell cycle checkpoints and leads to robust G0/G1 or G2/ 
M arrest, thereby halting cancer cell proliferation [21].

Beyond these ROS-mediated effects, eco-AgNPs exert their 
anticancer effects through multiple synergistic mechanisms. 
Their interactions with critical signaling proteins enable 
modulation of apoptotic pathways, including upregulation of 
p53 and Bax alongside downregulation of Bcl-2 [25, 26]. 
Furthermore, they inhibit tumor proliferation by disrupting 
cell cycle progression and interfering with MAPK signaling 
[2]. Importantly, eco-AgNPs also target tumor vascularization 
by suppressing VEGF and FGF expression while impairing HIF 
and PI3K/Akt pathways [27, 28]. This multifaceted action against 
apoptosis, proliferation, and angiogenesis underscores their 
potential as precision oncology therapeutics. The 
multifactorial anticancer mechanisms of eco-AgNPs are 
summarized in Figure 1. These nanoparticles induce cancer 
cell death through both direct cytotoxic effects, such as ROS 
generation, mitochondrial dysfunction, including mitochondrial 

membrane potential (MMP) loss and electron transport chain 
(ETC) disruption, and DNA double-strand breaks (DSBs), and 
regulatory effects, including caspase activation, p53/Bax 
upregulation, Bcl-2 downregulation, and VEGF pathway 
suppression. Their selective toxicity toward cancer cells is 
attributed to the lower antioxidant capacity (AOC) of 
malignant cells and the enhanced permeability and retention 
effect (EPR) effect.

Targeted nanotherapeutics: 
functionalization strategies

The transition from passive to active targeting represents a 
paradigm shift in nanomedicine, enabling precise delivery of 
therapeutic agents to specific cellular targets while minimizing 
off-target effects. For eco-AgNPs in precision oncology, surface 
functionalization strategies have emerged as a critical approach 
to enhance therapeutic specificity and overcome the limitations 
of conventional passive targeting mechanisms [29]. The inherent 
advantage of eco-AgNPs lies in their naturally occurring bio- 
corona, which provides multiple functional groups and binding 

FIGURE 1 
Multimodal anticancer mechanisms of ecofriendly silver nanoparticles (eco-AgNPs). Note: The question mark (?) in the figure indicates other 
unknown mechanisms that may be revealed by future studies owing to the multi-targeted actions of eco-AgNPs. Abbreviations: AOC, Antioxidant 
Capacity; DSB, DNA Double-Strand Breaks; EPR, Enhanced Permeability and Retention; ETC, Electron Transport Chain; MMP, Mitochondrial 
Membrane Potential; ROS, Reactive Oxygen Species. ↑, upregulation/enhancement; ↓, inhibition/downregulation (Created by the author and 
adapted from [12, 21, 25, 27]).
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sites that can be exploited for targeted modification without 
compromising nanoparticle stability or biocompatibility [11, 30]. 
While passive targeting through the EPR effect provides initial 
tumor accumulation, active targeting strategies offer superior 
precision by exploiting the molecular signatures of cancer cells 
[31]. Passive targeting relies on the anatomical and physiological 
differences between tumor and normal tissues, including 
enhanced vascular permeability, defective lymphatic drainage, 
and prolonged retention times [32]. However, the heterogeneous 
nature of tumor vasculature and the variability in EPR effects 
across different cancer types limit the clinical efficacy of passive 
targeting alone [33]. Active targeting addresses these limitations 
by incorporating specific ligands that recognize and bind to 
biomarkers overexpressed on cancer cell surfaces, thereby 
facilitating receptor-mediated endocytosis and enhancing 
intracellular drug delivery [34].

The selection of appropriate targeting ligands is crucial for 
achieving selective cancer cell recognition and uptake. 
Antibodies represent the most extensively studied targeting 
ligands, offering high specificity and affinity for their cognate 
antigens [35]. Although chemical synthesis allows easier surface 
modification due to predictable ligand conjugation (e.g., via thiol 
chemistry), eco-AgNPs’ inherent biomolecular corona (e.g., 
proteins, polysaccharides) can serve as a natural platform for 
functionalization, reducing the need for additional coating steps 
and potentially improving in vivo stability [11]. Monoclonal 
antibodies targeting overexpressed receptors such as human 
epidermal growth factor receptor 2 (HER2) in breast cancer 
[36], epidermal growth factor receptor (EGFR) in lung and oral 
cancers [37, 38] and CD20 in lymphomas [39] have been 
successfully conjugated to both chemically synthesized and 
eco-AgNPs, demonstrating enhanced therapeutic efficacy and 
reduced systemic toxicity [2]. However, the large molecular size 
of antibodies may limit tissue penetration and increase 
immunogenicity, necessitating the development of smaller 
alternatives [40]. On the other hand, peptide-based targeting 
ligands offer several advantages over antibodies, including 
smaller size, lower immunogenicity, enhanced tissue 
penetration, and cost-effective synthesis [41]. Furthermore, 
tumor-homing peptides such as RGD (Arg-Gly-Asp) 
sequences that target αvβ3 integrins, and tumor-penetrating 
peptides like iRGD (internalizing RGD) that facilitate deep 
tissue penetration, have been successfully employed to 
functionalize AgNPs for targeted cancer therapy [42–44]. 
These peptides can be synthesized with specific amino acid 
sequences that confer selectivity for particular cancer types or 
stages, enabling personalized therapeutic approaches [45]. 
Interestingly, aptamers, short single-stranded DNA or RNA 
molecules that bind to specific target proteins with high 
affinity, represent another promising class of targeting ligands. 
Their unique advantages include small size (typically 8–15 kDa), 
chemical stability, lack of immunogenicity, and the ability to be 
chemically modified for enhanced functionality [46]. Aptamers 

targeting cancer-associated proteins such as nucleolin, mucin 1, 
and prostate-specific membrane antigen have been conjugated to 
various types of nanoparticles, demonstrating selective cancer 
cell binding and internalization [47], suggesting potential 
applications for eco-AgNP conjugation.

The effective bioconjugation of targeting moieties to eco- 
AgNPs demands sophisticated surface modification approaches 
that simultaneously maintain nanoparticle structural integrity 
and preserve the biological activity of conjugated ligands. 
Covalent conjugation strategies, including carbodiimide 
chemistry, maleimide-thiol coupling, and click chemistry, 
provide stable linkages between targeting ligands and 
nanoparticle surfaces [48]. The choice of conjugation method 
depends on the available functional groups on both the 
nanoparticle surface and the targeting ligand [15]. Eco-AgNPs 
possess an inherent bio-corona enriched with multiple functional 
groups, notably amine, carboxyl, and hydroxyl moieties, which 
provide accessible conjugation sites for ligand immobilization 
[30]. Spacer molecules and linkers play a crucial role in 
maintaining the biological activity of conjugated ligands by 
preventing steric hindrance and providing optimal orientation 
for target recognition [49]. Polyethylene glycol (PEG) linkers are 
commonly employed to enhance the flexibility and accessibility 
of targeting ligands while also providing stealth properties that 
reduce protein adsorption and extend circulation time [50]. The 
length and composition of these linkers can be optimized to 
achieve the desired balance between targeting efficiency and 
nanoparticle stability [51]. Advanced functionalization 
strategies incorporate stimuli-responsive elements that enable 
controlled drug release in response to specific tumor 
microenvironmental conditions. pH-responsive systems 
exploit the acidic environment of tumor tissues (pH 6.5–7.0) 
and endosomal compartments (pH 5.0–6.0) to trigger targeted 
drug release [52, 53]. pH-sensitive linkages, such as hydrazone 
bonds and acid-labile acetals, can be incorporated into the 
targeting ligand conjugation to achieve selective drug release 
at the tumor site [54]. Furthermore, enzyme-responsive targeting 
systems utilize the overexpression of specific enzymes in tumor 
tissues, such as matrix metalloproteinases (MMPs) and 
cathepsins, to trigger drug release [55]. Peptide substrates that 
are specifically cleaved by these enzymes can be incorporated as 
linkers between targeting ligands and drug payloads, enabling 
precise spatial and temporal control of therapeutic 
agent release [56].

Despite the promising potential of targeted eco-AgNP 
therapeutics, several challenges must be addressed to optimize 
their clinical translation, including tumor heterogeneity, 
optimization of ligand density, and quality control of 
functionalized nanoparticles [57–59]. Multi-ligand 
functionalization approaches and advanced characterization 
techniques are essential for overcoming these limitations and 
ensuring therapeutic efficacy. The development of targeted 
AgNP therapeutics represents a convergence of 
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nanotechnology, molecular biology, and precision medicine, 
offering unprecedented opportunities for personalized cancer 
therapy that will undoubtedly play an increasingly important role 
in next-generation precision oncology therapeutics.

Biomarker-driven applications in 
precision oncology

In precision oncology, biomarkers function as quantifiable 
biological indicators that inform cancer diagnosis, prognosis, and 
treatment selection, facilitating the implementation of 
personalized therapeutic strategies [60]. Eco-AgNPs, with their 
highly tunable surface properties, are uniquely positioned to be 
engineered to utilize these biomarkers, transforming them from 
general cytotoxic agents into highly selective, targeted delivery 
platforms [61, 62]. Strategic functionalization enables eco-AgNPs 
to bind specifically to receptors or proteins overexpressed on 
cancer cell surfaces while exhibiting minimal affinity for healthy 
cells. This selective targeting forms the cornerstone of 
biomarker-driven precision oncology. One predominant 
approach in biomarker-guided therapy involves targeting 
overexpressed growth factor receptors on cancer cell surfaces. 
Receptors such as the epidermal growth factor receptor (EGFR) 
and human epidermal growth factor receptor 2 (HER2) are well- 
established drivers in lung, breast, and gastric cancers [63, 64]. In 
preclinical in vitro studies, nanoparticles have been successfully 
functionalized with ligands like antibodies and affibodies to 
achieve active tumor targeting. Specifically, EGF-labeled 

liposomes have been used to direct eco-AgNPs to EGFR- 
overexpressing cells [63], while various nanotherapeutics have 
been conjugated with antibodies like Trastuzumab to target 
HER2-positive breast cancers [36, 64]. To illustrate these 
applications, Table 1 summarizes key biomarkers and their 
associated targeting strategies; while many of these 
foundational approaches were established using various 
nanoparticle systems, they provide a validated blueprint for 
engineering the next-generation of eco-AgNP-based 
therapeutics. Among the most extensively studied biomarkers 
are the growth factor receptors EGFR and HER2, which are 
frequently overexpressed across aggressive cancers, including 
pancreatic, breast, and lung malignancies. Eco-AgNPs 
functionalized with anti-EGFR antibodies or HER2-targeting 
affibodies have demonstrated promising therapeutic effects in 
preclinical studies [66]. In addition to these broadly relevant 
receptors, pancreatic adenocarcinoma (PDAC) presents unique 
targeting opportunities through several overexpressed 
biomarkers. Mesothelin, a membrane protein crucial for cell 
survival, migration, and invasion, has become a focus for both 
diagnostic imaging and therapeutic intervention, with 
nanoparticle imaging probes and mesothelin antibody- 
conjugated liposomes under active development [65]. The 
urokinase plasminogen activator receptor (uPAR) represents 
another attractive target, as it is highly expressed in both 
pancreatic cancer cells and their surrounding stromal cells, 
making it particularly valuable for improving intratumoral 
drug delivery and ensuring therapeutic agents reach difficult- 
to-penetrate tumor regions [69]. The urokinase plasminogen 

TABLE 1 Key cancer biomarkers and their targeted applications with nanoparticles/eco-AgNPs in precision oncology.

Biomarker Cancer type Role in 
pathogenesis

NPs/AgNPa 

targeting strategy
Application type Preclinical 

efficacy/outcome
References

Mesothelin Pancreatic, ovarian, 
mesothelioma

Cell survival, migration, 
invasion, progression

Antibody conjugation 
(e.g., mesothelin- 
targeted liposomes)

Targeted therapy, 
diagnostic imaging, 
theranostics

Simultaneous detection 
& therapy; improved 
drug delivery

[65]

EGFR Pancreatic, lung, 
breast

Cell growth, 
proliferation, drug 
resistance

Antibody conjugation 
(e.g., Anti-EGFR)

Targeted therapy Inhibited growth, 
apoptosis, increased 
radiation sensitivity

[37]

HER2 Breast, gastric Cell growth, 
proliferation, drug 
resistance

Affibody conjugation 
(e.g., HER2-affibody)

Targeted therapy High binding, 
cytotoxicity, tumor 
growth inhibition

[22, 66]

Lactateb Various solid 
tumors

Altered glucose 
metabolism, energy 
production

Glucose-functionalized 
AgNPs (G-AgNPs)

Targeted therapy, drug 
delivery

Enhanced cytotoxicity, 
DNA damage

[67]

CD44 Lung, cancer stem 
cells

Stem cell marker, 
adhesion, migration

Ligand-mediated 
targeting (e.g., anti- 
CD44)

Targeted therapy Mitochondrial damage, 
apoptosis, and autophagy

[68]

Plectin-1 Pancreatic ductal 
adenocarcinoma

PDAC-specific 
overexpression

Nanoparticle imaging 
probes

Diagnostic imaging, 
targeted therapy

Potential for early 
diagnosis and 
intervention

[65]

aThe references found in this table deal with numerous nanoparticles, some of which are eco-AgNPs.
bWarburg effect.
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activator receptor (uPAR) is another compelling biomarker, as it 
is highly expressed in both pancreatic cancer cells and their 
surrounding stromal cells. Targeting uPAR is particularly 
valuable for improving the delivery of therapeutic agents into 
dense, hard-to-penetrate tumors. A recent preclinical study 
demonstrated that an antibody-drug conjugate (ADC) 
targeting uPAR successfully suppressed tumor growth in 
pancreatic cancer models [69]. While this study employed an 
ADC rather than a nanoparticle system, the validation of this 
target provides a compelling blueprint for future eco-AgNP 
conjugation strategies. [69]. While this study did not use 
nanoparticles, it confirms uPAR as a high-potential target for 
future AgNP-based delivery strategies. Additional emerging 
biomarkers in pancreatic cancer include Plectin-1, Mucin-1, 
and ZIP4, which are being explored for targeted imaging and 
therapeutic interventions, reflecting the growing sophistication 
of eco-AgNP applications in highly specific cancer types [70]. 
Moreover, beyond traditional tumor markers, CD44 has gained 
attention as a common cancer stem cell marker that can be 
effectively targeted by AgNPs [68]. This targeting strategy 
impacts the expression of genes related to cancer stem cells 
and potentially offers a pathway to overcome drug resistance [22, 
71]. The ability to target cancer stem cells represents a 
particularly promising avenue, as these cells are often 
responsible for treatment resistance and tumor recurrence [72].

Beyond surface proteins, metabolic biomarkers also offer 
compelling avenues for targeted intervention. The “Warburg 
effect,” characterized by elevated glucose metabolism and 
lactate production in cancer cells, can be exploited for 
targeted delivery using glucose-functionalized AgNPs [67]. 
This targeting strategy exploits the overexpression of specific 
receptors on cancer cell surfaces, such as folate receptors, 
through functionalization with targeting ligands including 
antibodies, peptides, and aptamers. This approach enables 
selective binding and preferential accumulation of AgNPs in 
tumor cells that overexpress these target receptors, while 
minimizing uptake in healthy cells with lower receptor 
expression levels [66]. Building upon these targeting strategies, 
theranostics represents a powerful extension that integrates 
diagnostic imaging with therapeutic delivery within a single 
nanoparticle platform. This approach enables real-time, non- 
invasive monitoring of drug delivery, biodistribution, and 
treatment response, representing a significant advancement 
over traditional oncology where treatment efficacy is assessed 
retrospectively [73]. Eco-AgNPs can serve as contrast agents for 
enhanced tumor imaging, guiding surgeons for more accurate 
tumor removal or improving contrast in modalities like MRI [2]. 
Specific applications include mesothelin antibody-conjugated 
liposomes loaded with iron oxides and doxorubicin for 
simultaneous detection and therapy of pancreatic cancer [65]. 
The advantages of eco-AgNPs for theranostics include their 
biocompatibility, stability, and ability to facilitate 
proteogenomic imaging for tracking cellular activity [74]. This 

integrated approach provides real-time insights into drug 
delivery and therapeutic effects, facilitating dynamic treatment 
adjustments and ultimately leading to improved patient 
outcomes with reduced side effects [2, 75].

Ultimately, the detection of high levels of specific biomarkers 
in a patient’s tumor is crucial for biomarker-guided patient 
stratification, allowing clinicians to select the most appropriate 
targeted therapy and move towards truly personalized medicine. 
This approach promises to improve treatment efficacy and 
reduce adverse effects by ensuring therapies are delivered to 
patients most likely to benefit. However, it is important to 
acknowledge that some biomarkers may not be entirely 
cancer-specific, and tumor heterogeneity remains a persistent 
challenge. This complexity means that targeting a single 
biomarker might not always be sufficient for complete tumor 
eradication, potentially necessitating multi-biomarker targeting 
or combination therapies to overcome the adaptive nature of 
cancer [76]. While the strategies mentioned above have been 
validated, the principles demonstrated in other advanced 
nanomedicine systems highlight promising future directions 
for eco-AgNP-based therapies. For instance, the acidic tumor 
microenvironment could be exploited by developing pH- 
responsive AgNPs designed for acid-triggered release, a 
mechanism that has been successfully demonstrated in vitro 
and in vivo for other nanocarriers [53]. Similarly, in cancers 
with genetic vulnerabilities like BRCA1/2 mutations, combining 
AgNPs with PARP inhibitors could create a synthetic lethality 
approach, a strategy that is being explored with other 
nanoparticle systems [77]. Furthermore, the theranostic 
potential of AgNPs could be expanded by developing 
platforms with integrated imaging probes for real-time 
monitoring of therapy, an approach that has shown success 
for HER2-positive cancers using different types of 
nanoparticles [78]. Validating these advanced strategies 
specifically for AgNPs is a critical next step to broaden their 
application in precision oncology.

Current challenges and future 
perspectives

Despite the remarkable preclinical promise and versatility of 
eco-AgNPs in cancer therapy, their widespread clinical 
translation faces substantial and multifaceted challenges. There 
is a clear paradox between the high efficacy observed in 
laboratory settings and the numerous practical, engineering, 
and regulatory hurdles that impede their journey from bench 
to bedside. The complex pathway from laboratory discovery to 
clinical implementation, along with corresponding challenges 
and proposed solutions, is illustrated in Figure 2. Overcoming 
these barriers is as crucial as continuing to discover new 
therapeutic effects. A primary concern revolves around the 
potential for off-target toxicity and the long-term 
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accumulation of AgNPs in vital organs, such as the liver. While 
silver is not traditionally considered a cumulative poison, 
prolonged exposure can lead to undesired effects, necessitating 
rigorous and comprehensive toxicological studies, particularly in 
vivo assessments, to fully understand their safety profiles and 
ensure biocompatibility for human use [82]. Additionally, 
achieving large-scale, cost-effective, and consistent production 
of eco-AgNPs with uniform physicochemical properties remains 
a significant challenge for clinical application. Scalability remains 
a particular hurdle for eco-AgNPs, as microbial- or plant-based 
synthesis lacks the rapid, high-yield production of chemical 
methods [83]. However, advances in bioreactor optimization 
and standardized extraction protocols are narrowing this 
gap. The long-term stability of nanoparticles during storage, 
including issues like aggregation or oxidation, is often 
neglected but critical for maintaining their 
therapeutic efficacy [79].

The regulatory landscape for nanomedicines is complex and 
stringent, requiring extensive data on safety, efficacy, and 
manufacturing quality. Specific issues like endotoxin 
contamination, which can lead to early failure in clinical trials, 
also pose hurdles, as current quantification assays are often 
inadequate [57, 79]. Furthermore, a complete understanding 
of the precise intracellular, paracellular, and transcellular 
pathways of nanodrugs across biological membranes is still 
lacking, which can hinder efficient cellular internalization into 

tumor cells. Achieving optimal and sustained, targeted drug 
release in vivo without premature leakage remains a 
significant problem. The dense tumor stroma, or desmoplasia, 
particularly prevalent in cancers like pancreatic adenocarcinoma, 
presents a formidable physical barrier that impedes drug 
penetration and distribution within the tumor [57, 65].

Cancer’s inherent genetic and functional heterogeneity 
within single tumors, coupled with cancer cells’ remarkable 
ability to develop resistance mechanisms, poses a continuous 
challenge even to novel AgNP-based therapies [75, 80]. 
Additionally, predicting individual patient responses to 
nanomedicines remains difficult, and there is potential for 
unexpected allergic or adverse reactions in diverse patient 
populations, which complicates broad clinical application [57]. 
The complexity of these challenges necessitates a broad spectrum 
of specialized knowledge spanning chemistry, materials science, 
biology, engineering, medicine, and regulatory science. This 
underscores the critical need for robust, multi-disciplinary, 
and collaborative research ecosystems to accelerate the safe 
and effective clinical translation of eco-AgNPs.

To bridge the gap between bench and bedside, recent 
international efforts have focused on harmonizing standards 
for nanomedicines. The OECD’s 2025 report on the safety 
testing of manufactured nanomaterials [84] and the new 
guidance on assessing accumulation potential [85] provide 
critical frameworks for addressing dosing regimens and 

FIGURE 2 
Current challenges and future perspectives in the clinical translation of eco-AgNPs for cancer therapy (Created by the author and adapted from 
[57, 79–81]).
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toxicokinetics. These guidelines aim to harmonize safety 
assessments across sectors and are particularly relevant for 
mitigating the batch-to-batch variability often associated with 
green synthesis. Concurrently, ISO/TS 20660:2019 establishes 
rigorous benchmarks for characterizing AgNPs, detailing 
measurement methods for essential attributes such as primary 
particle size, zeta potential, and total silver content [86]. 
Adhering to these specifications is vital for ensuring the 
reproducibility of eco-AgNPs in oncological applications.

From a regulatory perspective, the FDA’s guidance on drug 
products containing nanomaterials emphasizes a risk-based 
approach to characterization, focusing on critical quality 
attributes (CQAs) and the potential for altered biodistribution 
and long-term toxicity [87]. Similarly, the EMA’s Regulatory 
Science Strategy to 2025 [88] and Horizon Scanning Report [89] 
highlight the necessity of quality-by-design principles and the 
development of specific evaluation pathways for complex 
nanomedicines, including stimuli-responsive systems. These 
evolving regulatory frameworks outline a clearer roadmap for 
verifying the safety and quality of eco-AgNPs, thereby facilitating 
their transition from laboratory discovery to clinical trials.

Looking toward the future, continued efforts are imperative 
to develop safer, more efficient, and scalable synthesis methods, 
with a strong emphasis on green synthesis approaches to enhance 
biocompatibility and reduce environmental impact. Future 
research will focus on designing novel functionalization 
strategies that achieve even greater specificity, further reduce 
off-target toxicity, and enable sophisticated stimuli-responsive 
drug release, allowing for precise control over drug delivery at the 
tumor site [81]. Moving beyond simple synthesis, a novel 
Frontier lies in ’corona engineering’-manipulating the 
biological feedstocks during green synthesis to selectively 
incorporate specific plant proteins or metabolites into the 
nanoparticle coating. This would effectively encode targeting 
or stimuli-responsive properties directly into the eco-AgNP’s 
native surface during synthesis, reducing the need for complex 
post-synthesis chemical modifications. There is immense 
potential in exploring synergistic effects by combining eco- 
AgNPs with conventional treatments such as chemotherapy 
and radiotherapy, as well as emerging therapies including 
immunotherapy and gene therapy. AgNPs have been shown 
to intensify the effect of chemotherapeutic agents, and 
combination therapies targeting cancer stem cell genes 
represent a sophisticated avenue for overcoming drug 
resistance and enhancing overall therapeutic efficacy, 
particularly in challenging cancers like non-small cell lung 
cancer [90]. The continued development of eco-AgNP-based 
theranostic agents for real-time, non-invasive monitoring of drug 
delivery, biodistribution, and treatment response is crucial. 
Furthermore, expanding the use of high-throughput ’omics’ 
technologies, including proteogenomics and metabolomics, is 
essential to unravel the complex molecular and metabolic 
changes induced by eco-AgNPs in cancer cells, including 

those currently unknown (as indicated by the question mark 
in Figure 1). This deeper understanding is crucial for developing 
more robust, effective, and adaptive anticancer therapies that can 
circumvent resistance mechanisms [80].

Future strategies must focus on developing innovative 
approaches to actively modulate or overcome the physical and 
biological barriers posed by the tumor microenvironment, such 
as disrupting desmoplasia, to improve AgNP penetration and 
therapeutic efficacy [80]. The future of eco-AgNPs in oncology 
will involve their further integration into personalized medicine 
frameworks by leveraging advanced technologies to overcome 
key translational hurdles. For instance, AI-driven diagnostics can 
analyze complex patient data to predict treatment outcomes, 
directly addressing the challenges of tumor heterogeneity and 
unpredictable patient responses. Concurrently, “organ-on-a- 
chip” platforms using patient-derived cells can provide more 
accurate preclinical screening for both efficacy and toxicity, 
helping to resolve biocompatibility concerns before human 
trials. This signifies an evolution from viewing eco-AgNPs 
merely as a “drug” to conceptualizing them as sophisticated, 
multi-functional systems that can intelligently interact with the 
complex biological environment. The success of eco-AgNPs in 
oncology hinges not just on the silver itself, but on the entire 
engineered nanoplatform surrounding it, emphasizing design 
over mere discovery [12, 81, 91].

Discussion

Silver nanoparticles represent a transformative therapeutic 
platform in precision oncology, offering multi-modal anticancer 
mechanisms including reactive oxygen species generation, 
apoptosis induction, and cell cycle arrest. Eco-AgNPs present 
compelling advantages over chemically synthesized variants 
through ecofriendly synthesis, reduced systemic toxicity, and 
inherent biomolecular coronas that facilitate functionalization. 
Advanced targeting strategies enable selective tumor 
accumulation, while integration with biomarker-guided 
applications facilitates personalized treatment by exploiting 
cancer-specific molecular signatures. AgNP-based theranostics 
advance the field by combining diagnostic imaging with 
therapeutic delivery, enabling real-time treatment monitoring 
and adaptive therapy optimization. However, substantial 
challenges remain, including long-term toxicity concerns, 
clinical translation hurdles involving scalability and regulatory 
compliance, and tumor heterogeneity with associated 
physical barriers.

Future research priorities include optimizing green synthesis 
methods, developing novel functionalization strategies, and 
exploring combination therapies. Advanced omics 
technologies will provide crucial mechanistic insights for 
designing robust treatments. Successful clinical translation 
requires viewing eco-AgNPs as versatile engineered platforms 
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demanding multidisciplinary collaboration. With continued 
innovation, eco-AgNPs hold tremendous potential to 
revolutionize cancer treatment and improve patient 
outcomes worldwide.
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