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Artificial intelligence (Al) is rapidly transforming healthcare, and the field of kidney
transplantation (KT) is no exception. While much of the Al-related work has focused on
deceased donor KT, there is a growing body of research applying Al tools to living kidney
donation (LKD). This review explores Al's current and potential roles in LKD, focusing on
predictive and social applications of Al in LKD. Additionally, we discuss the challenges and
limitations of implementing Al in clinical settings and highlight emerging research trends.
This review consolidates existing research and provides a foundation for both transplant
professionals and data scientists seeking to integrate Al responsibly into living donor
programs.
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INTRODUCTION

Living kidney donation (LKD) remains a vital approach to bridging the gap between supply and
demand in kidney transplantation (KT), offering improved graft survival, less delayed graft function,
and shorter wait times than deceased donor transplantation [1-3]. Yet, LKD programs confront
persistent obstacles: a limited donor pool, intricate immunologic and medical evaluations, and
psychosocial factors affecting donor candidacy and retention [1-3].

Artificial intelligence (AI), leveraging modern computational techniques and large-scale data,
holds promise for addressing these obstacles. In KT, AI can enhanced risk stratification, optimized
organ allocation, and supported recipient management, particularly in deceased donor contexts [4,
5]. However, systematic synthesis of AI's impact on LKD remains limited.

In this review, we examine current applications of Al in LKD, from risk prediction and donor
evaluation to patient education and social media analysis. We evaluate model methodologies and
discuss clinical integration, ethical implications, and directions for future research. The goal is to
offer clinicians, researchers, and policymakers a clear, evidence-based perspective on AI’s role in
advancing living kidney donation.

METHODS

Literature Search

A comprehensive literature search was conducted across PubMed and Google Scholar to identify
studies pertaining to Al in LKD. Search strategies incorporated keywords across two domains: 1) Al
and predictive modeling (e.g., generative artificial intelligence, machine learning), and 2) living
kidney donation (e.g., live kidney donation, living kidney donor, living donor kidney transplantation
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[LDKT]). We excluded studies that were abstracts without full
text, non-English publications, or focused on deceased donation
in their methods. Only articles that were published from
2008 onward were considered to ensure a focus on
contemporary techniques and advancements. Study selection
was finalized through iterative discussion among JN, MM, and
ML (Table 1).

OVERVIEW OF Al METHODS IN
LKD RESEARCH

Common Metrics to Assess Model Quality
The studies discussed throughout this review used common
machine learning metrics to assess the performance of their
models with respect to accuracy, discrimination,
calibration (Table 2).

Overview of Clinical Problems and Models
We provide an overview the clinical problems addressed in the
included studies, the models used to address each problem, and
the rationale for the usage of certain models (Table 3).

Traditional Machine Learning Models
Traditional machine learning (ML) techniques such as eXtreme
Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN)
algorithm, and Naive Bayes (NB) algorithm have been used to
create post-operative prediction systems of outcomes such as
graft survival and post-operative renal insufficiency. These
models aim to better inform LKD donors about their donation
risks and support clinicians in counseling potential LKD donors.
XGBoost is an ensemble-learning method that combines
multiple smaller models into a single, more accurate one. This
is done by building many shallow decision trees sequentially, each
one improving upon the errors of the last [21]. The model focuses
on efficiency, speed, and high performance, using parallel
processing to train models on large datasets. It is a highly
effective model for training on tabular clinical datasets across
various prediction tasks due to its handling of missing data,
ability to automate ranking of variables, and regularization to
reduce overfitting, which can reduce model training time
compared to manual methods [21]. XGBoost has demonstrated
versatility across multiple applications in LKD research. XGBoost
was employed for variable selection in the Live-Donor Transplant
Outcome Prediction model (L-TOP), leveraging its ability to
handle missing values for automated elimination of variables
[17]. In the UK, researchers used XGBoost alone to develop a
predictive model for graft failure in LKD recipients using data from
the UK Transplant Registry, where it was favored due to the
presence of nonrandom missing data. Compared to a decision
tree approach and a random survival tree approach, XGBoost
provided the highest Area Under the Receiver Operating
Characteristic (AUROC) score for all time points of its task [7].
In other words, across all time points, the XGBoost based model
achieved and maintained the highest ability to distinguish between
LKD patients with graft failure and those whose graft survived.
Additionally, XGBoost has been applied to predict post-donation
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eGFR of donors in order to identify individuals at risk for post-
donation renal insufficiency [8]. The XGBoost-based model
achieved the highest AUROC and showed the strongest
correlation between predicted and observed pre- and post-
donation eGFR values. These findings suggest that the model
may offer a reliable tool for forecasting postoperative eGFR
outcomes, potentially assisting clinicians in the evaluation and
selection of living kidney donors [8].

XGBoost outcomes are less interpretable than commonly used
linear models due to modeling and training methods involving
multiple decision trees. One method to create a more
interpretable model is to combine multiple, more interpretable
algorithms together. In 2019, Atallah et al. combined two model,
KNN and NB, to create a model for measuring five-year graft
survival of LKD recipients [6]. KNN is a predictive model that
categorizes a new sample into a class by identifying the k’ closest
samples and assigning it the most common class among them,
making it far more interpretable than XGBoost since model
decisions are due to proximity to groups of samples [22].
However, since KNN is directly dependent on the number of
samples, its performance degrades as the amount of data, number
of variables, or dimensionality increases.

Atallah et al. addressed this by using a Naive Bayes (NB)
algorithm for variable selection, identifying the most relevant
inputs for KNN based on probabilistic categorization [6]. Naive
Bayes (NB) is a probabilistic model that assumes independence
among variables yet often performs well in medical contexts
where interpretability is critical, such as disease and risk
prediction [23]. Atallah et al. used NB to iteratively exclude
individual variables, retaining those whose removal reduced
model accuracy [6]. Given the need to evaluate 44 variables,
this approach leveraged NB’s computational efficiency. The
combination of NB for variable selection with KNN ultimately
demonstrated the highest accuracy and mean F1 score compared
with nomogram, decision tree, Bayesian network, and neural
network models available at the time [6].

Traditional ML techniques are already well established and
continue to remain valuable for developing predictive models in
LKD. With the availability of more powerful computational
hardware, combining multiple ML algorithms in one model has
become increasingly easier to do. As these combined models are
composed of multiple, interpretable pieces, these models can
potentially improve predictive performance, while maintaining
the interpretability needed for clinical decision-making.

Neural Networks

Neural Networks (NN) are being used to gather insights from
high-dimensional inputs where regular variable selection is not
feasible. NN are used to mimic the decision-making manner of
the human brain and consist of layers of interconnected nodes
acting akin to connected neurons [24]. Basic neural networks are
early examples of deep learning, capable of capturing complex
nonlinear patterns. Deep learning is a natural evolution of early
NNs, where more layers of nodes could be trained to capture far
more nuanced patterns due to increased computational ability in
the past decade [25]. Early predictive models in LKD include
efforts to use basic NNs for five-year survival estimation [9]. In a

Transplant International | Published by Frontiers

January 2026 | Volume 38 | Article 15334



Nawar et al.

TABLE 1 | Summary of Al applications in living kidney donation.

Tool name Model(s) used Population Application
Traditional machine learning models
KNN + naive Naive bayes + KNN n=2728 Graft failure prediction (5 years)
bayes
UK-LTOP XGBoost n=12,661 Graft failure prediction
(1-12 years)
KDNI XGBoost n =823 Post-donation eGFR
(6-12 months)
Neural networks
Neural network Neural network n = 1,900 Graft survival prediction (5 years)
3D DenseNet DenseNet n=1,074 Post-donation eGFR
CNN CNN n=1930 Segmentation of kidney CT scan
and estimation of kidney volume
LST™M LST™M n=203,219 Classification of social media post
relation to LKD
Transformer models
ChatGPT 3.5, Transformers n = 3292 Classification of reddit post
BERT relation to LKD
ChatGPT, Transformers n=35 Evaluation of readability of
MedGPT, gemini generated information on LKD
ChatGPT 3.5, Transformers n=27 Evaluation of readability of
ChatGPT 4.0 generated information on LKD
ChatGPT Transformers n=20 Evaluation of accuracy of
generated information on LKD
Specialized models
L-TOP XGBoost + deep n=66,914 Graft failure prediction
COx mixtures (1.5-13 years)
RAPTO AutoScore n =823 Post-donation eGFR
(6-12 months)
Gia chatbot Decision tree n=>54 APOL1 risk education

chatbot
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Results

80.77% accuracy

73.5% F1 score

5 years: 0.73 AUROC, 0.72 C-statistic
10 years: 0.75 AUROC, 0.72 C-statistic
12 years: 0.79 AUROC, 0.72 C-statistic
0.900 AUROC,

73.2% sensitivity,

90.3% specificity

0.88 AUROC,

88.43% sensitivity, 73.26% specificity, 88% accuracy,
82.1% PPV,

82% NPV

Donors with higher remnant kidney volume to weight
ratio exhibit less change in post donation eGFR

p > 0.05 for all estimated volumes of cortex and medulla

60.2% F1

36.8% specificity
77.1% sensitivity
62.9% accuracy

78% F1

79% specificity

79% sensitivity

79% accuracy

39.42 FRES

10.63 FKGL

Reduced FKGL by 4.30 + 1.71 (p < 0.001)

96% reduction of information to eight grade level or
below

55% of responses rated to have >80% accuracy
85% of responses rated to have >66% completeness
85% of responses rated to be >75% not harmful

5 years: 0.70 AUROC, 0.70 CTD

10 years: 0.68 AUROC, 0.67 CTD

13 years: 0.68 AUROC, 0.66 CTD

0.846 AUROC,

0.965, AUPRC

82% agreed “neutral and unbiased”, 82% agreed
“trustworthy”, and 85% “words, phrases, and
expressions are familiar to the intended audience”
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study by Akl et al., NNs were trained on donor-recipient variables
to learn patterns associated with successful transplant outcomes
[9]. While less complex than modern NN models, this work
demonstrated the early potential of in LKD graft survival
prediction. Compared to nomogram-based models to predict
5-year graft survival estimation, the NN achieved higher
sensitivity and predictive accuracy, and achieved almost twice
the positive predictive value [9].

Convolutional neural networks (CNNs) are a type of neural
network designed to process image data through convolutional
layers that analyze each pixel in the context of its neighbors,

enabling effective detection of edges and textures. CNNs are used
in facial recognition, object detection, and handwriting
recognition [25]. In a study by Korfiatis et al, CNN-based
segmentation was used to quantify cortical and medullary
kidney volumes from imaging data [11]. The results showed
correlations between segmentation with clinical donor
characteristics, offering a new biomarker for renal health and
transplant planning [11]. Additionally, the segmentation of
kidney CTs were achieved in less than 5 min, a great increase
in efficiency compared to the 30-90 min that a human observer
could take on the same task [11].
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TABLE 2 | Common metrics to assess model quality.

Metric Definition

Sensitivity or recall
model [20]

Specificity
model [20]

Positive predictive value (PPV) or
precision

Negative predictive value (NPV)

F1 score

Area under the receiver operating
characteristic curve (AUROC)

Area under the precision-recall curve
(AUPRC)
1.0 (perfect performance) [20]

Densely Connected Convolutional Network (DenseNet) is a
deep CNN designed for efficient image classification. Unlike other
NNs in which each layer shares its output with the next layer,
DenseNet connects each layer to every other layer in a feedforward
fashion. This improves parameter efficiency and information flow,
preventing variables from being lost or ignored [26]. Applications
of DenseNet include object recognition for autonomous driving,
X-ray analysis, and robot vision. A 3D DenseNet model was
developed by Jo et al. to measure kidney volume from CT
images in elderly donors [10]. Viewing the model’s measured
kidney volume against post-donation eGFR revealed significant
negative correlations in elderly donors [10].

In general, CNNs have already been applied effectively in
image-based LKD prediction tasks. However, despite the strength
of NNs to easily deal with high dimensional inputs, less
sophisticated techniques with lower variables may be favored
for interpretability, especially regarding prediction modeling such
as predicting LKD outcomes.

Language Models

Language models are models which specifically process text as
input data for tasks. At the time of this writing, language
modeling has exploded as one of the most popular areas in
the field of AL particularly due to the creation of transformer
models [27]. From this newfound popularity of transformers,
text-based tasks in LKD such as donor outreach and
communication have enjoyed a recent surge of interest as well

Proportion of true positive cases correctly identified by the

Proportion of true negative cases correctly identified by the

Proportion of predicted positives that are truly positive [20]

Proportion of predicted negatives that are truly negative [20]

Harmonic mean of precision and recall [20]

Measures a model’s ability to discriminate between patients with
and without the condition across all thresholds. AUROC values
range from 0.5 (0.5 is random chance) to 1.0 [20]

Measures the tradeoff between precision and recall across all
thresholds. AUPRC values range from O (poor performance) to

Artificial Intelligence in Living Kidney Donation

Clinical interpretation

High sensitivity indicates few patients with the condition are
missed. This is important for screening or early detection, where
failing to identify a case may have deleterious consequences
High specificity minimizes false alarms. This is important for
confirmatory testing or when unnecessary treatment should be
avoided

High PPV indicates that a positive result reliably suggests that the
patient has the condition. This is important when providers rely on
positive results to guide diagnosis or initiate treatment; PPV
strongly depends on prevalence of the condition

High NPV indicates that a negative result reliably suggest that the
patient does not have the condition. This is important in ruling out
the presence of the condition; NPV strongly depends on the
prevalence of the condition

High F1 indicates that the model achieves good balance between
false positives and false negatives. Ignores true negatives; may be
clinically misleading when false positives carry a substantial
burden. This is important when both types of diagnostic errors
have clinical consequences (e.g., missing a diagnosis and over-
diagnosing are equally undesirable)

High AUROC indicates that the model can reliably discriminate
between patients with and without the condition, independent of
the specific decision cutoff. Disscrimination only; does not
indicate PPV/NPV at a working threshold or calibration

High AUPRC indicates that the model correctly identifies most
patients with the condition while rarely misclassifies patients
without the condition as positive. Baseline depends on
prevalence; especially relevant for imbalanced outcomes. This is
important when the disease is rare, and both false positives and
false negatives can be costly

[28]. While transformers may be popular now, previous models
such recurrent neural networks (RNN) can be relevant to
language tasks where simplicity and lower computational cost
are a concern.

Transformer Models

Transformer models use self-attention mechanisms to evaluate
all words in a sentence simultaneously, identifying key
relationships regardless of word position or distance [29].
Bidirectional Encoder Representations from Transformers
Models (BERT) consider both previous and subsequent
words to better understand the input text [30]. Meanwhile,
Generative Pretrained Transformer Models (GPT) generate
human-like responses based solely on previous words [27].
BERT models focus on reading comprehension and
classification tasks such as search engines and text
classification. GPT models focus on writing, chatting, and
summarizing and have applications in text generation and
translation. A notable aspect of transformer models is the
ability to fine-tune them, which involves taking a transformer
model previously trained on a general corpus of information
and training this pre-trained model on a dataset specific to some
tasks, essentially “specializing” the model to the desired task
[30]. Nielsen, et al., 2025 fine-tuned BERT and GPT models and
used them to determine if Reddit posts were written by users
who presently undergoing experiences in LKD, users who
previously experienced effects of LKD, and general LKD
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TABLE 3 | Key clinical challenges in living kidney donation and potential Al solutions.

Artificial Intelligence in Living Kidney Donation

Clinical challenge/ Models used Rationale
Question
Transplant outcome e Naive bayes ® Naive bayes and KNN are simple methods which can fetch modest results with some tuning. They can also be
prediction o KNN used as supporting methods in data preprocessing
e XGBoost e XGBoost, neural networks, deep cox mixtures, and Autoscore can have very good results in prediction at the cost
® Neural network of some added complexity
® Deep cox mixtures
® AutoScore
Education e |STM e | STM and transformers are well suited in identifying long term dependencies in text sequences
e Transformers e Transformers-based models are currently the state of the art in on-the-fly text generation
® Decision tree e Decision trees provide an easy to interpret hierarchy which can be easily explained
Donor risk or perioperative risk @ Deep cox mixtures @ Currently, a deep cox mixtures model has had its results compared to LKDPI
® Autoscore e Autoscore is a framework to build customizable risk scores
Image analysis e CNN e The internal computation of CNNs and 3D DenseNet, which is called the “convolution” is and has been well
e 3D DenseNet established in analyzing image data

news [30]. Gathering these insights into donor anxiety, medical
concerns, social support needs, and emotional experiences at
scale has only just become possible with current
transformer models [13].

In educational applications, GPT-based models have been
evaluated for generating materials on LKD, demonstrating the
ability to produce accurate and readable content at the college
level for public awareness campaigns and patient education [14].
ChatGPT has shown promise in improving patient
communication by rewriting FAQs for living donors, where it
was found to significantly reduce the reading level of FAQs,
enhancing clarity for users with diverse literacy levels [15].
Additionally, ChatGPT’s responses to real patient questions
about kidney transplantation have been analyzed for accuracy,
completeness, and potential harm and has demonstrated the
ability to provide accurate and up to date information for
most LKD questions which are commonly asked, suggesting
its potential as a valuable supplement to human education
efforts [16]. However, limitations from model “hallucinations”,
or the generation of responses which are factually and logically
incoherent, remain [31].

Recurrent Neural Networks

RNN s process sequential data retaining previous steps in memory
in order to understand current tasks. However, important events
from less recent steps are often forgotten. Long Short-Term
Memory models (LSTM) are a type of RNN that better retain
relevant information across longer time steps, making them well-
suited for modeling long-term patterns such as the general
populace sentiment with respect to LKD. LSTMs use gating
mechanisms which filter events that should be kept, used, and
forgotten [32]. Applications of RNNs and LSTMs include
autocomplete during typing, speech recognition such as Siri or
Google Assistant, and language translation. Asghari et al,
2022 used a deep RNN using LSTM nodes to classify and
interpret social media posts, reliably determining whether they
were related to LKD [12]. This approach demonstrates the
potential for automating the identification of potential LKD
donors on a large social media scale [12].

Rule-Based Methods

Despite the very recent advances in language modeling, well
designed simple models still work well for very specific tasks while
also offering high interpretability for clinicians. Rule-based
chatbots occupy this niche, as they rely on decision trees or if-
then logic to guide users through structured interactions. They
are designed to educate and support patients in their choices.
Although they are not as sophisticated as chatbots driven by GPT
based models, these models offer greater transparency and
consistency. The “Gia” chatbot, a rule-based conversational
agent, was developed to educate African American donor
candidates about the APOLI gene, a known genetic risk factor
for kidney disease. In testing, users generally found the chatbot to
be neutral, unbiased, and trustworthy [19]. Until the extent of
racial bias with respect to transformer models is extensively
studied and addressed, simple language models such as Gia
are best suited to tackle LKD language tasks targeted at
specific populations.

Current transformer models and prior RNNs have made it
possible for researchers to evaluate how LKD patients respond to
their care at a scale previously unimaginable. At the same time,
GPT-based models have made it possible to communicate with
patients in a new way, creating LKD content automatically and
with reasonable accuracy.

Specialized Models
In some studies, some customized models were developed in an
attempt to address LKD problems in a more unique way
compared to previously discussed models. There are currently
few specialized Al architectures which have been deployed to
address LKD problems. However, the studies done suggest
potential upsides for these approaches in LKD outcome
prediction and even building new profiling methods in LKD.
One type of specialized model is Deep Cox Mixtures (DCM),
where NNs are used to generate patterns from input patient data
and then a combination of Cox models is then used to predict
time-to-event outcomes based on the generated NNs patterns.
This method enables personalized, flexible risk estimation and
uses hazard functions to retain interpretability [17]. Applications
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of DCMs include survival estimation of various diseases, such as
cancer, as well as variables associated with diseases, such as serum
free light chain, for example. DCM was incorporated into the
Live-Donor Transplant Outcome Prediction (L-TOP) model to
predict death-censored graft failure of LKD recipients. The
predictive ability of L-TOP outperformed the live kidney
donor profile index on the same population [17]. At the cost
of some complexity, DCM was able to elevate the bar for
donor profiling.

In addition to elevating clinical scoring, specialized models
open the possibility for creating clinical scores. AutoScore is a
specialized model that combines multiple models for variable
selection, discretization, and logistic regression to produce
interpretable risk scores that facilitate clinical decision-
making [18]. Autoscore translates the outputs of a
combination of multiple models into a simple, point-based
scoring system. In LKD, AutoScore has been used to develop
models that stratify donor risk based on readily available
preoperative factors such as demographic information,
kidney volume, GFR, and lab values [10]. Jeon et al. used the
AutoScore model to build an interpretable scoring system for
renal adaptation, allowing clinicians to stratify donor risk using
a simple point-based system [33]. The generated scoring model
was able to predict the probability of fair renal adaptation,
defined by the study as a post-donation eGFR >60 mL/min/
1.73 m? [33]. Prior to Jeon et. al, few studies existed to predict
renal adaptation based on pre-operation variables, let alone a
clinical score for renal adaptation. The Autoscore model
leverages multiple interpretable and generalizable modules as
part of its architecture, potentially allowing risk scores to be
generated for other LKD outcomes.

DISCUSSION

Recent developments indicate a shift toward more
comprehensive, personalized, and interpretable applications of
Al in LKD. Emerging work aims to integrate multiple Al
technologies for more robust decision-making, while also
addressing ethical, social, and clinical concerns associated with
transplantation.

One major trend is the prevalence of simpler Al architectures in
clinical tools. More advanced, modern transformer-based and deep
learning architectures often function as “black boxes,” delivering
predictions without clarity on their reasoning [34]. While
explainability techniques such as SHAP (SHapley Additive
exPlanations) can be used to address this ambiguity; however, it
is important to note that still there are limitations to consider when it
comes to SHAP in its ability to explain models [34]. To address this
challenge, approaches in LKD literature, Atallah et. al., AutoScore
and L-TOP aim to balance accuracy with interpretability [6, 17, 33].
These models prioritize transparency, enabling clinicians to
understand the rationale behind each prediction, which in turn
fosters trust and supports shared decision-making.

Another key trend is the use of large electronic health records
(EHRs) datasets to improve generalizability across populations.
As highlighted recently, efforts are being made to overcome
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single-center biases by training models on national data [35].
National and representative data help mitigate the risk of
algorithmic bias, ensuring that Al tools perform reliably across
diverse demographic and geographic settings.

Finally, Al is increasingly seen not only as a predictive engine,
but also as a communication facilitator. Tools like GPT-based
chatbots are being adapted to support personalized donor
education, provide real-time patient support, and enhance
counseling.

Challenges and Limitations

Data Heterogeneity

Despite its promise, the application of AI in LKD faces several
persistent challenges. One of the foremost barriers is the
heterogeneity of available data. Clinical datasets often vary
in format, quality, and completeness across institutions. This
results in situations where, for the same problem, certain
approaches are non-transferrable due to differences in data
collection processes and variable availability, as observed in
LTOP and UK-LTOP [7, 17]. Moreover, data missingness
within collected variables can create additional challenges
for model development and interpretation. While
imputation techniques can address missingness in certain
contexts, non-random missingness makes imputation
inappropriate, as it introduces bias. This constraint
influenced model selection in UK-LTOP, where tree-based
algorithms were selected over DCM (successfully used in
L-TOP) as they handle missing data without imputation.
Furthermore, variations in imputation strategies affect
evaluation metrics, particularly the AUROC score, which
may impact performance comparisons and limit
external validity.

Validation

In addition to the heterogeneity of available data, the current lack
of scale poses a substantial obstacle. At present, the largest dataset
that evaluated LKD transplant outcomes was limited to tens of
thousands of patients, with test samples of similar size [17]. Lack
of scale and diverse cohorts not only hinders the development of
robust models, but it also prevents adequate large-scale external
validation—-an essential step in establishing generalizability and
adoption of prediction models [28, 36, 37]. Although LKD
models may report promising results, especially in predicting
donor outcomes, their broader applicability is uncertain. It is
difficult to ascertain whether a model is prone to overfitting to
specific patterns without validating it using data beyond the test
set of a study, even when techniques like cross-validation or
temporal splits are employed. Therefore, it becomes unclear how
susceptible the model is to data drift (ie., changes in the
distribution of input data over time as new data is
incorporated) [36]. Along with the need for large-scale
external testing, few of the discussed studies compared the
predictive performance of their models to current standard
models, such as the living kidney donor profile index (LKDPI)
[17]. While this comparison may not be relevant for all studies, it
would be valuable for graft survival prediction models to
understand the benefit of the proposed techniques. Overall,
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robust validation methods external testing in diverse cohorts are
essential to ensure consistent and reliable performance.

Model Complexity

There is an ongoing tension between model complexity and
overfitting, which underscores the challenge of balancing
model accuracy and generalizability. Rooted in the bias-
variance tradeoff, greater model complexity increases the risk
of achieving high performance on inputs that are specific to the
training data, but fails to generalize effectively to unseen test data
or real-world clinical settings. Additionally, increased model
complexity often comes at the cost of reduced explainability,
which can introduce undue risk for providers in decision-making.
As such, simpler models may be preferred to prevent this from
occurring. However, in some instances, such as images or large-
scale data, a more complex model is often better suited to capture
the increased complexity and scope. When applying complex
models to clinical decision-making, it is essential to assess their
external validity, calibration, and decision-support usefulness.
This can be achieved using standard performance metrics
(Table 1) alongside evaluations of model transportability and
integration into clinical workflows. Ultimately, appropriate
model selection requires careful evaluation of the input data,
goals, and tradeoffs, ensuring the design of a model that balances
performance with explainability and real-world applicability.

Adoption

Despite rigorous validation, numerous barriers persist in the
clinical adoption of AL One key barrier is inconsistent
reporting of metrics across models, particularly in outcome
prediction models. Standardized reporting of performance
metrics (Table 1) would enhance comparability and help
identify which models are most appropriate for decision
support in clinical use.

Another important barrier is the lack of trust in predictive
modeling. Providers may be hesitant to rely on models that do not
have clear explainability or transparency, especially in the current
context of minimal regulatory oversight [38, 39, 40]. Addressing
concerns around liability from inaccurate predictions is
important for clinical adoption and emphasizes the need for
regulations.

Ethical issues also arise when Al tools are used in patient-
facing applications like donor or recipient education and social
media analysis. Consent, bias, and data safety are key ethical
issues that must be considered for the responsible and equitable
use of Al tools [28, 36, 39-41]. Experiments involving Al models
like ChatGPT require more consideration of their results, as the
datasets used for evaluation are often curated from online sources
such as community-generated benchmarks and platforms
aggregating human activity [42]. This introduces questions
about the provenance of data, quality control, and the need
for inclusion of diverse perspectives, particularly when
vulnerable populations are involved.

Establishing standardized benchmarks to assess these tools,
particularly in scenarios such as LKD communication, remains
an important challenge. Evaluating AI tools for fairness,
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especially when vulnerable populations are involved, remains
equally important [4, 28, 37, 39]. Addressing these concerns
requires robust standards for ethical Al implementation in
clinical environments, which will be essential for promoting
trust, safety, and equitable outcomes in patient care.

Finally, issues of cost must be addressed when considering
integrating Al into clinical practice. Infrastructure requirements
like data storage, data maintenance, and security add significant
expenses. From a modeling perspective, substantial costs arise
from training predictive models and deploying them across
health systems, which is necessary to ensure quick, reliable,
and easily accessible model outputs for clinical decision-making.

CONCLUSION

Al is beginning to play a meaningful role in LKD, from
predicting outcomes and improving donor-recipient
matching to analyzing social media and enhancing patient
education. Still, most models require validation with
multicenter data, and future work should prioritize
interpretability. Usability and fairness must also be addressed
to ensure these tools can be effectively and equitably integrated
into transplant care. As this field grows, close collaboration
among clinicians, data scientists, and ethicists will be essential to
realize the full benefits of Al in LKD.
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