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Lungs remain one of the most difficult solid organs for xenotransplantation, owing to its
delicate alveolar capillary barrier and intense crosstalk between innate immunity and
coagulation system. Multi-gene-engineered donor pig organs combined with co-
stimulation pathway blockade based immunosuppressive regimen have extended
xenograft survival in preclinical models using non-human primates (NHP) from hours to
weeks. Most recently, the first case of lung xenotransplantation into a brain-dead human
recipient was reported, confirming technical feasibility without hyperacute rejection while
revealing early inflammatory injury and progressive dysfunction. Key barriers include loss of
vascular barrier function, dysregulated coagulation and platelet function driven by porcine-
human molecular incompatibilities, and antibody-mediated injury. Preclinical data implicate
innate immune activation such as natural killer cells and macrophages. Unlike kidney
xenotransplantation, which has achieved stable long-term outcomes in NHPs, lungs
require attention to immunogenicity against the “fourth antigen” in triple-knockout
(TKO) donors that include the positive crossmatch created by the CMAH deletion
when TKO organs are tested in NHP. Although consistent multi-month lung xenograft
survival has not yet been achieved in preclinical models, the remaining barriers to clinical
translation are being defined. This review delineates lung-specific xeno-immune
mechanisms and advances aimed at their mitigation, providing insights necessary for
future clinical translation.

Keywords: xenotransplantation, lung, pig-to-baboon xenotransplantation, non-human primate model,
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INTRODUCTION

Lung transplantation is the gold standard and final therapeutic option for various types of end-stage
chronic pulmonary diseases. However, the persistent global shortage of donor organs remains a
critical challenge. Despite the utilization of expanded-criteria donors, including donation after
circulatory death, and advancements in organ allocation systems, the waitlist mortality remains
alarmingly high at over 28 deaths per 100 person-year [1]. Long waiting time and high waitlist
mortality highlight the urgent need for alternative solutions. Xenotransplantation—the
transplantation of organs from one species to another—has emerged as a promising alternative
to address this unmet need. Recent milestones include pig-to-human heart [2] and kidney [3]
xenotransplantation under “compassionate use” circumstances. These breakthroughs leveraged
extended graft survival and function achieved in non-human primate (NHP) models using
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multi-genetically engineered
immunosuppressive  regimens
pathway [4-6].

Lung xenotransplantation presents unique and formidable
challenges due to the lung’s delicate alveolar architecture, large
populations of resident immune cells, and inherent susceptibility
to inflammation. Xeno lung differs from allo lung by triggering a
host of innate immune injury mechanisms that do not normally
play any significant role in allo, amplifying the deleterious
consequences of inflammation and injury. Lung injury or
inflammation typically leads to loss of vascular barrier
function, alveolar flooding, and progressive loss of gas transfer
functionality. Specifically, the immediate activation of pig lung
macrophages after exposure to human blood, rapid accumulation
of human neutrophils, and severe platelet sequestration and
activation pose hurdles to achieving even short-term lung
xenograft survival in NHP model or during ex vivo perfusion
with human blood [7-10].

Despite multiple breakthroughs that have enabled improved
preclinical results and even clinical translation of kidney and
heart  xenotransplantation,  progress in  the lung
xenotransplantation has remained comparatively limited [11,
12]. Even with similar gene modifications and further
intensified immunosuppressive protocols, preclinical NHP
models of lung xenotransplantation (including a recent pig
lung in a ‘decedent’ human) reported survival of only a few
days to weeks [7, 13].

This review aims to provide a comprehensive overview of the
current state of xeno-lung transplantation, highlighting recent
scientific breakthroughs, ongoing challenges, and future
directions. By synthesizing findings from preclinical studies
and experimental models, this article seeks to inform future
research and clinical translation efforts in this rapidly
evolving field.

(GE) pigs and advanced
targeting  co-stimulation

STRUCTURAL VULNERABILITIES AND
IMMUNOLOGICAL BARRIERS IN LUNG
XENOGRAFTS

The extensive surface area of lung vascular endothelium
represents a primary initial target of injury in xenogeneic lung
transplantation. This endothelium, intimately associated with the
alveolar epithelium via a thin connective tissue layer and
basement membrane, is a principal target for preformed anti-
pig antibodies, “recipient” innate immune cells such as
neutrophils, NK cells, and monocytes, and coagulation
pathway component adhesion and activation [11]. The lungs
also harbor a specialized immune surveillance network,
comprised of tissue-resident macrophages, basophils,
eosinophils, and other inflammatory cells that normally
participate in lung tissue surveillance. While this system is
highly effective in detecting and responding to pathogens, it
renders the lungs uniquely susceptible to local inflammatory
reactions compared with other transplanted organs.
Endothelial activation and injury results in loss of vascular
barrier function with alveolar flooding which prevents gas
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exchange in that lung region, exacerbating graft failure [14,
15]. Our prior research consistently demonstrates that
inflammatory responses in both the xenograft and the
recipient are significantly more pronounced for lung
xenografts compared to other pig organs [5, 11, 16-27].

The intrinsic vulnerability of the lungs to xenogeneic injury
arises from the interplay of innate immune pathways and
interspecies physiological mismatches. Preformed antibodies,
particularly those directed against the a-1,3-galactose (a-Gal)
epitope, rapidly bind to donor endothelial cells, triggering
complement activation and hyperacute rejection within
minutes [28, 29]. This cascade leads to endothelial damage,
microvascular thrombosis, and pulmonary edema, culminating
in graft failure. While the genetic knockout of the
galactosyltransferase enzyme (GalTKO) has effectively
eliminated o-Gal-mediated hyperacute rejection in other
organs [30, 31], subsequent studies revealed that innate and
adaptive immune responses persist [18, 32-35]. These
responses target other porcine antigens, including those
derived from the N-Glycolylneuraminic acid (Neu5Ge/CMAH)
and B-1,4-N-acetyl-galactosaminyltransferase 2 (p4Gal) genes
[36]. Lungs from GalTKO.CMAHKO.human CD46 (hCD46)
pigs, when perfused ex vivo with human blood, showed
significant reductions in thrombin generation, thromboxane
and histamine release, and pulmonary vascular resistance
compared to controls without CMAHKO [37]. This genetic
combination delays the onset of pulmonary vascular injury
and preserves graft function [37].

Building on these findings, triple-knockout (TKO) pigs
(GalTKO.CMAHKO.4GalKO) have  shown  further
improvements. In a notable in vivo experiment, lungs from
these genetically engineered pigs supported baboon recipients
for 5 days without the need for additional human protective
transgenes [7]. In comparison, GalTKO lungs without CMAHKO
or B4GalKO typically fail within 24 h and provide only marginal
function [7]. While the TKO approach initially appeared to be the
optimal and foundational genetic modification for
xenotransplantation, subsequent research has revealed a
new challenge.

Baboons and other Old World NHP possess antibodies
against TKO pig cells, apparently targeting a “fourth
xenoantigen” that becomes exposed following CMAHKO
[38-40]. Our pilot data also support this finding: in vivo
experiments using genetically engineered pig with
10 genetic modifications (10GE) (TKO. Growth hormone
receptor knockout [GHKO].hCD46.hCD55.human
endothelial ~ protein  C  receptor = [hEPCR].human
thrombomodulin [hA'TBM].human heme oxygenase-1 [hHO-
11.hCD47) pig lungs elicited high levels of innate immune
system activation and systemic inflammation in baboon
recipients (unpublished). In contrast, the longest survival
observed in our in vivo studies (31 days) was achieved
using pig lungs from donors with “double knockout”
(DKO) (GalTKO.p4GalKO) [7]. These findings suggest that
TKO organs—even in the widely used 10GE construct or in
pigs with fewer genetic modifications—are insufficiently
protected against immune-mediated injury in NHP models.
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However, the positive cross-matches against GalTKO +
CMAHKO or TKO cells were not observed in human [39, 41].

We believe this phenomenon undermines the predictive
accuracy of NHP-based transplant results for clinical
outcomes, as these immune challenges are unlikely to occur in
human recipients. Consequently, while NHP studies provide
valuable insights, their results may underperform in reflecting
the true potential of these genetically modified organs in clinical
settings, emphasizing the importance of refining genetic
constructs and preclinical models including work in human
‘decedents’. In August 2025, a Chinese group reported the first
experimental single left lung xenotransplantation into a brain-
dead ‘decedent’ human patient, observing the organ’s histologic
appearance for a 9-day period. By day 1 the posterior >80% of the
lung xenograft appeared to be filled with fluid, suggesting rapid
loss of barrier function, similar to pig-to-baboon lungs when
well-described lung xeno rejection mechanisms are not inhibited.
This model, if additionally used to assess life-supporting lung
function, offers the potential to yield valuable insights into the
current viability of and remaining challenges for clinical lung
xeno application [13].

INFLAMMATORY AND THROMBOTIC
PATHWAYS IN LUNG
XENOTRANSPLANTATION

The sequestration and activation of circulating leukocytes and
platelets are hallmark features of lung xenograft injury, uniquely
severe compared to other xenografted organs. These processes
persist even when antibody binding and complement activation
are minimized, indicating that additional adhesive and activation
mechanisms play significant roles in the pathogenesis [11].
Porcine endothelial cells are potent activators of human
leukocytes, primarily through cytokine elaboration and
species-specific incompatibilities in cellular pathways.

Interleukin-8 (IL-8), a key chemoattractant produced by
porcine endothelial cells, significantly promotes neutrophil
adhesion and rolling on the endothelium [42]. Elevated IL-8
levels observed in ex vivo pig lung perfusion models stimulate
human neutrophil activation and adhesion, exacerbating
pulmonary vascular resistance (PVR) and vascular barrier
dysfunction [42]. Additionally, porcine endothelial selectins,
such as P- and E-selectin, enhance neutrophil tethering and
rolling, further amplifying leukocyte infiltration [43]. Blocking
these selectin-mediated interactions with inhibitors like GM1271
(E-selectin) and rPSGL-1 (P-selectin) has shown efficacy in
mitigating neutrophil-mediated damage [43].

Platelet activation plays a similarly critical role in lung
xenograft injury. Porcine von Willebrand factor (pvWE),
expressed and released by porcine endothelial cells,
demonstrates abnormal interactions with human glycoprotein
Ib (GPIb). Unlike human von Willebrand factor (hvWF), which
binds weakly to GPIb under normal conditions and requires high
shear stress for activation, pvWF activates quiescent human
platelets even under low shear stress. This aberrant interaction
leads to pathological platelet aggregation and microvascular
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thrombosis, significantly contributing to the prothrombotic
environment within the xenograft. Such conditions exacerbate
vascular occlusion and graft injury, creating a formidable barrier
to long-term lung xenograft survival [44].

Donor lung pretreatment with desmopressin (DDAVP), as
reported by a Korean group, reduces platelet activation by
depleting pvWF from endothelial cells and minimizing its
interaction with GPIb [45]. Our ex vivo lung perfusion studies
further support this approach, demonstrating that pre-depletion
of pvWF using DDAVP, combined with the administration of
GPIb antagonists, effectively attenuates platelet activation [20].
Moreover, humanizing pvWF by replacing a portion of the gene
region encoding the GPIb-binding site with its human analogue
in GalTKO.hCD46 pig lungs has been shown to suppress non-
physiological human platelet aggregation and sequestration
within the pig lung and liver [46]. This genetic modification
represents a pivotal advancement, providing a safer and more
effective approach to lung xenotransplantation. Importantly, it
may also facilitate xenotransplantation applications for other
organs and cells, broadening its potential clinical impact.

COAGULATION CASCADE ACTIVATION
AND DYSFUNCTIONAL
THROMBOREGULATORY MECHANISMS

Coagulation abnormalities are a major contributor to lung
xenograft injury, driven by endothelial cell activation or
damage, which triggers the coagulation cascade and leads to
rapid thrombus formation. Key factors implicated in this process
include TBM, EPCR, and TFPI. Although porcine TBM can bind
human thrombin to form a thrombomodulin-thrombin complex,
its protein C activation efficiency is only 1%-10% that of hTBM
[47, 48]. Similarly, porcine EPCR and TFPI, which inhibit
extrinsic coagulation pathway factors, exhibit significantly
reduced activity compared to their human counterparts
[47, 49-52].

Our ex vivo perfusion model using human blood
demonstrated that expressing hTFPI in GalTKO pig lungs
effectively suppressed neutrophil activation and provided
protective effects, supporting the hypothesis that human-
derived coagulation regulatory factors are critical for
mitigating graft injury [10]. Baboon in vivo models further
revealed that co-expression of hEPCR and hTBM was
associated with reduced M-thromboglobulin (BTG) levels,
consistent lung survival beyond 12 h, and a higher rate of
achieving 1initial life-supporting xenograft function [7].
However, these advances can only delay the onset of barrier
dysfunction and fail to completely prevent it.

Early production of thromboxane and histamine also
contributes to loss of barrier function [19]. Treatment with
the selective thromboxane inhibitor 1-benzylimidazole (1-BIA)
combined with H-2 or non-selective histamine receptor
antagonists significantly suppressed PVR elevation and delayed
vascular barrier dysfunction [21]. However, the combination of
drug regimens targeting inflammatory cytokines such as tumor
necrosis factor-a (TNF-a), IL-8, and IL-6 have not fully
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eliminated these mediators, and barrier dysfunction persists.
These findings highlight the need for further investigation into
the mechanisms driving coagulation abnormalities and
inflammation to develop more effective therapeutic strategies.

COMPLEMENT-MEDIATED LUNG
XENOGRAFT INJURY

Complement activation is particularly pronounced in lung
xenotransplantation due to the organ’s high vascular density and
unique susceptibility to immune-mediated injury. To prevent some
protection against activation of the complement pathway, human
complement regulatory proteins (CPRPs)—including decay
accelerating factor (DAF_CD55), membrane cofactor protein
(MCP_CD46), and membrane-attack-complex-inhibitory protein
(MAC-IP_CD59)—have been introduced into the organ source
pigs [53]. (Porcine CPRPs are not very effective at controlling
human complement activation due to interspecies molecular
incompatibilities and differences in their expression levels on
vascular endothelium [54, 55]).

In addition, several pharmacological approaches have been
explored to mitigate complement activation in lung xenografts,
including the use of Cl-esterase inhibitor, soluble complement
receptor 1 (sCR1), FUT-175, and depleting agents such as cobra
venom factor (CoVF). While these strategies have demonstrated
partial success, none has provided a definitive solution [56-58].
To address this challenge, genetic introduction of human
complement regulatory proteins (hCPRPs), such as CD46,
CD55, and CD59, has been investigated. When combined with
DKO or TKO backgrounds, these genetic modifications have
shown promising results in preclinical in vivo models.
Specifically, hCPRPs expression in xenografts has been
associated with reduced complement deposition, decreased
platelet activation, and delayed graft injury in lungs, as well as
in other organs such as the heart and kidneys [19, 59, 60].

SELF-RECOGNITION AND XENOGRAFT
INJURY BY MACROPHAGE AND NATURAL
KILLER CELL

Cellular immune mechanisms are central to lung xenograft injury,
involving macrophages and natural killer (NK) cells. Signal
regulatory protein alpha (SIRPa), a key inhibitory receptor
expressed on macrophages, plays a crucial role in distinguishing
self from non-self. Interaction between SIRPa and its ligand,
CD47 prevents autologous phagocytosis [61, 62]. However, in
the absence of this interaction, porcine cells become highly
susceptible to phagocytosis by human macrophages. Introducing
human CD47 into porcine cells significantly reduces this
susceptibility and effectively inhibits macrophage-mediated
phagocytosis [63, 64]. Yamada et al. further reported that
expressing CD47 in porcine lungs extended chimerism after
bone marrow transplant and improved xeno-lung recipient
survival in baboons [65]. While Watanabe et al. reported up to
10-day survival in baboon recipients using a GalTKO base with
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hCD47 expression alone, our series using
GalTKO.hCD46 Dbackgrounds with hCD47 alone or in
combination with other humanized proteins (e.g, hEPCR,
hTBM, hCD55, human tissue factor pathway inhibitor [WTFPI],
and HO-1) failed to achieve consistent survival beyond 2 days [7].
Anatomical localization of hCD47 within the graft may influence its
efficacy, warranting further investigation [66].

Pre-harvest donor macrophage depletion using liposomal
clodronate has shown attenuation of acute ischemia reperfusion
injury in a mouse lung allotransplant model and prevented
endotoxin-induced acute lung injury in pigs showing
significantly lower levels of TNF-q, IL-6, and thrombin [67, 68].
When it is applied to xenotransplantation, macrophage depletion
significantly attenuates hyperacute rejection in wild-type pigs [22,
69]. In our in vivo baboon model, not only the use of liposomal
clodronate but also anti-pig antibody absorption and cytokine
inhibition =~ were  associated =~ with  longer  xeno-lung
recipient survival [7].

In addition to CD47, human CD39 and CD73 have emerged as
promising anti-inflammatory mediators. These molecules convert
extracellular pro-inflammatory ATP into AMP, reducing
inflammation and vascular constriction [70, 71]. Genetically
engineering porcine lungs to express human CD39 and
CD73 could further suppress inflammation and enhance graft
survival by modulating the graft’s immune microenvironment.

Natural killer (NK) cells play a dual role in xenograft injury by
identifying and lysing non-self cells through both antibody-
dependent and independent mechanisms. A critical factor
driving NK cell activation in xenografts is the incompatibility
between human inhibitory receptors and the porcine major
histocompatibility complex (MHC), also known as swine
leukocyte antigens (SLA). This weak interaction fails to deliver
the necessary inhibitory signals, leaving porcine cells vulnerable
to NK cell-mediated destruction [72]. Moreover, the absence of
human leukocyte antigen E (HLA-E) on porcine endothelial cells
exacerbates NK cell activation by preventing the recognition of
negative regulatory signals [73, 74]. In contrast, lungs from
GalTKO.hCD46  pigs expressing HLA-E demonstrated
substantial protection against NK cell attacks both in vitro and
in an in vivo model, leading to reduced early graft injury and
prolonged survival in preclinical models [74-76].

IMMUNOSUPPRESSIVE REGIMEN AND
TARGETED DRUG THERAPIES

Optimal immunosuppressive regimens for lung
xenotransplantation remain undefined. Building on the
promising outcomes of co-stimulation pathway blockade in
cardiac and renal allo- and xenotransplantation [2, 5, 77-81],
strategies targeting CD154/CD40 and CD28/B7 pathways have
been investigated in vivo lung xenograft models [7]. While these
approaches have shown potential in modulating adaptive anti-
xeno immunity, they are insufficient as standalone therapies.
Consequently, co-stimulation blockade has been combined with
conventional immunosuppressive therapies commonly used in
human organ transplantation, including pre-transplant induction
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TABLE 1 | Known barriers to durable lung xenograft function, mitigation strategies tested to date, and planned next steps.

Key issue Key issue

Adaptive immune responses

Elicited cellular and
humoral immunity against
pig antigens

Innate immune responses
Dysregulated coagulation
Platelet activation and

sequestration

Complement activation

Injury mediated by

Loss of vascular endothelial barrier preformed antibody

function reflects the integrated
consequence of these processes

Cytokine elaboration

NK cells

Pulmonary macrophages

Neutrophils

Mitigation strategies deployed to date
(genetic/pharmacologic)

Safe, effective immunosuppressive regimen
based on co-stimulation-blockade-based
regimen

hTBM/hEPCR/TFPI
Thromboxane synthesis inhibitor

Donor VWF depletion with desmopressin
Humanized VWF; GPIlb blockade

hCD46, hCD55, hCD59 and other human
transgenes; complement depletion with cobra
venom factor transitioning to C1 esterase
inhibitor, C3 or C5 inhibitors

Carbohydrate xenoantigen deletion: a-Gal/
B4GalNT2/CMAH

Adsorption of preformed antibody by donor
kidney perfusion

B-cell depletion with rituximab; splenectomy

Blockade of IL-6R, IL-8R, TNF-a
al -proteinase inhibitor
HLA-E transgene to engage human CD94/

NKG2A inhibitory signaling

hCD47; donor macrophage depletion with
liposomal clodronate

Blockade of P/E-selectin/PSGL-1 and Mac-1
(CD11b/CD18)

Address gaps with next steps

Verify anti-CD154 levels, test higher doses and
additional drug combinations so as to prevent
elicited anti-donor antibodies and optimize
maintenance immunosuppression

Optimize endothelial gene expression levels,
evaluate different gene combinations alone and
with goal-directed anticoagulation therapy
Incorporate humanized VWF into existing muilti-
GE pig lines

Optimize anti-GPIb fab dosing

Optimize pharmacologic drug dosing algorithms,
evaluate C3 and C4 inhibitors

Evaluate different combinations of human
complement regulatory transgenes at optimized
expression levels in donor pig lungs
Standardize crossmatch gating and non-Gal
antibody profiling

Evaluate CMAH-intact double-knockout
(GalTKO.p4GalKO) lungs with 6 or more human
transgenes targeting complement, coagulation,
inflammation

Plasma cell depletion or inhibition

Test IL-1R, IL-33 antagonists as add-on to inhibit
cytokine elaboration or block effects

Explore cytokine absorption using blood filters
Verify NK functional readouts (degranulation,
cytotoxicity) in EVLP/NHP, and molecular
evaluation of lung xenografts

Evaluate CD38 depletion

Develop strategies to inhibit recipient monocyte/
macrophage influx, activation

Add human-compatible SIRPa, hCD73 to pig
edits

Validate drug engagement, efficacy to inhibit
targeted pathway; develop strategies to inhibit
NETs

Explore adding hCD200 to pig edits

Abbreviations: f4GalNT2: B-1,4-N-acetyl-galactosaminyltransferase-2; CMAH.: cytidine monophosphate-N-acetylneuraminic acid hydroxylase (Neu5Gc); EVLP: ex vivo lung perfusion;
GPIb: glycoprotein Ib; hCD46/hCD47/hCD200: human cluster of differentiation 46, 47, 200; hEPCR: human endothelial protein C receptor; hTBM: human thrombomodulin transgenes;
HLA-E: human leukocyte antigen-E; IL: interleukin; KO: knockout; Mac-1: integrin aMB2; NETSs: neutrophil extracellular traps; NK: natural killer; NHP: non-human primate; PSGL-1:
P-selectin glycoprotein ligand-1; SIRPa: signal regulatory protein-oa; TNF- a: tumor necrosis factor- a; TFPI: tissue factor pathway inhibitor; vVWF: von Willebrand factor.

with antithymocyte globulin (ATG) and anti-CD20 (rituximab),
along with maintenance regimens comprising steroids and
mycophenolate mofetil (MMF). Additionally, splenectomy is
often performed in our in vivo models to reduce the reservoir
of recipient B-cells available to generate de novo anti-pig
antibodies as well as spleen-resident plasma cells
responsible for elaboration of preformed ‘innate’ anti-pig
antibodies, thus hoping to enhance immunosuppressive
regimen efficacy [7].

To address the unique inflammatory mediators that we have
observed to be elaborated in association with lung xenografts,
various anti-inflammatory agents have been explored. We now
consistently include anti-TNF-alpha (etanercept), anti-IL-8
(reparixin), anti-IL-6 receptor (tocilizumab), Cl-esterase
inhibitors, and alphal-proteinase inhibitors based on the

profile of cytokines we have measured in earlier work. Of
note, consistent incorporation of all 4 of these reagents is not
by itself sufficient to achieve consistent improvement in xenograft
survival or prevention of initial barrier dysfunction [7].

A significant milestone in the field was reported in August
2025, when researchers in China conducted the first lung
xenotransplantation in a brain-dead human recipient using a
6GE pig lung (TKO.CD55.CD46.TBM) [13]. The
immunosuppressive regimen included induction with ATG
and a tacrolimus-based protocol, supplemented with MMF,
steroids, anti-IL-2 receptor (basiliximab), anti-C5
(eculizumab), Janus kinase (JAK) inhibitor (tofacitinib), and
anti-CD80/86 (belatacept). Within the first 24 h radiologic
imaging revealed consolidation of the majority of the lung
xenograft. We suspect that resident pig lung macrophage
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activation triggered histamine and thromboxane elaboration,
contributing to significant edema and alveolar damage. In
addition, neutrophils, NK cells, and monocytes likely
infiltrated the lungs and caused additional inflammation.
While deposition of immunoglobulins suggesting antibody-
mediated rejection (AMR) was not clearly observed until day
3 we suspect antibody deposition and complement activation
were likely present earlier. The authors suggest that there were
signs of improvement in parenchymal damage by day 9, but
evidence to support this interpretation we do not find compelling.
Although this is a single case report, it highlights two critical
priorities for advancing lung xenotransplantation: it is essential to
measure lung function in addition to histology in order to
accurately predict likely performance of a pig lung xenograft
implanted with therapeutic intent; and controlling severe
inflammation, including AMR, during the first week post-
transplant was not accomplished by the regimen this team tested.

In contrast to lungs, in vivo baboon models of cardiac and
renal xenotransplantation have demonstrated prolonged graft
survival with less intensive immunosuppressive and anti-
inflammatory regimens [5, 76-81]. Elucidating the unique
vulnerability of lung xenografts to inflammation and rejection
by tailoring specific therapies to address them will be pivotal in
advancing lung xenotransplantation toward clinical application.
In Table 1 we summarize our view of the remaining major
barriers, the strategies we have tested to date, and next steps as we
have prioritized them, which we hope will allow us to accomplish
consistent long-term lung xenograft survival in our preclinical
model and, eventually, in humans.

CONCLUSION

Multi-gene engineering of donor pig and mechanism-based
adjuncts have extended experimental lung xenograft survival
from hours to days and, in selected NHP models, to weeks of
recipient  survival. ~ The  first  pig-to-human  lung
xenotransplantation in a brain-dead recipient confirmed
technical feasibility ~without hyperacute rejection but
underscored persistent lung-specific barriers, notably early
vascular-barrier failure, coagulation and platelet dysregulation,
and antibody-mediated injury. Evidence from preclinical studies
also indicates roles for NK cells and for macrophages in acute
injury pathways. Progress toward clinical exploration will need
further improvement of outcomes in preclinical models. In
addition to evaluation of TKO-based multi-GE pig lungs in
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