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Lung transplantation (LTx) offers life-saving therapy for patients with end-stage lung 
disease but remains limited by donor shortages, complex postoperative management 
and graft failure. Machine learning (ML) enables opportunities to address these 
challenges by identifying patterns in complex, high-dimensional data, thereby 
providing novel insights and improving outcomes. This review outlines ML studies 
in LTx and explains the methodologies. ML has demonstrated promising results in 
organ allocation and outcome prediction. Techniques such as support vector 
machines, and deep learning are useful in risk stratification, while methods like 
random forests improve interpretability and transfer learning supports model 
development in data-scarce settings. ML has a growing role in multi-omics data 
and imaging-based diagnostics. Despite promising results, barriers such as small 
datasets, cross-center inconsistency, poor interpretability, and limited external 
validation, hinder clinical adoption. Future progress requires multicenter 
collaborations, transparent methodologies, and integration within clinical workflows. 
ML should serve as complementary tool that enhances decision-making, rather than 
replacing clinical judgement. With careful implementation, it holds the potential to 
improve transplant outcomes.
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INTRODUCTION

Lung transplantation (LTx) is a life-saving treatment for end-stage lung disease. Despite surgical and 
perioperative advances, challenges remain, including donor shortage, primary graft dysfunction 
(PGD), and chronic lung allograft dysfunction (CLAD). As clinical data expand and pathophysiology 
is better understood, these challenges also increase in complexity. Traditional decision-making and 
predictive modelling is therefore limited.

Machine learning (ML), can identify complex, non-linear patterns, supporting outcome 
prediction and personalized care [1–5]. In solid organ transplantation, ML is increasingly used 
to predict survival and improve organ allocation [6]. Nonetheless, integration in LTx lags behind due 
to small, heterogeneous datasets and complex pathways [7].
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The aim of this narrative review is twofold. First, to provide 
clinicians with a conceptual foundation that fosters understanding 
of ML. Second, to explore ML applications in LTx, covering 
outcome prediction, organ allocation, imaging, omics, and 
other applications.

PRINCIPLES OF MACHINE LEARNING

ML enables mathematical models to learn from data, identify 
patterns, and make predictions with minimal human intervention. 
By leveraging algorithms, ML models extract insights and predict 
outcomes [1]. ML is a central component of artificial intelligence 
(AI) and closely connected to data science and computer science. 
These domains overlap (Figure 1) in methodologies, applications, 
and objectives, making clear distinction difficult [1, 3–5].

ML employs datasets specific for the task. In medical datasets, 
clinical factors (e.g., age, smoking) serve as dimensions (features), 
while individual observations (e.g., patients, images) represent 
samples (data points). Based on whether labeled data (samples 
with known outputs) are used, ML approaches can be classified as 
supervised, unsupervised, and semi-supervised [1–5, 8].

Supervised ML uses labeled data to train predictive models 
[1–5, 8]. To ensure generalizability, datasets are divided into 
training, validation, and testing subsets. Models first learn 
patterns from the training set. The validation set aids in 
hyperparameter tuning (e.g., batch size, learning rate). It 
detects underfitting and overfitting, meaning that the model is 
too simple to capture the true patterns, or learns the noise in the 
data, respectively (Figure 2) [1–3, 8]. Cross-validation is used to 
ensure generalizability by partitioning the dataset into training 
and validation subsets. An approach is k-fold cross-validation, 
which divides data randomly into k (a number) folds. The model 
is trained on k-1 folds and validated on the remaining one, 
repeating this process k times so each subset serves as 
validation once [1, 2, 5, 8]. Cross-validation ensures the model 
outcomes are robust and not dependent on a single random split 
of the dataset [1, 2, 5, 8]. Finally, the test set, an unseen portion of 
data, is used to evaluate the final model performance [1, 2, 8].

Supervised ML is used for classification and regression. Both 
utilize labeled datasets, but differ in output: classification predicts 
categories, regression predicts continuous values [1, 2, 5, 8].

Conversely, unsupervised ML analyzes unlabeled data to identify 
patterns [1–3, 5, 8]. Choosing between supervised and unsupervised 
learning can be difficult, particularly when labeled data are scarce. 
Semi-supervised ML bridges this gap by combining limited labeled 
data alongside many unlabeled samples, useful in medical research 
where data annotation is resource-intensive [1, 2, 8]. Commonly 
used ML methods, shown in Figure 3, are evaluated and compared 
using diverse metrics (Table 1).

STATE-OF-THE-ART OF MACHINE 
LEARNING IN LUNG TRANSPLANTATION

LTx involves a heterogeneous, limited patient population with 
extensive data. LTx recipients have worse outcome than other 

solid organ transplant recipients, highlighting persistent gaps. ML 
could contribute to personalized treatment and improved 
outcomes, as seen in other transplants [5, 9, 10].

The following section reviews key studies, as far as we know 
(2004–2025), organized into: (1) outcome prediction, (2) organ 
allocation, and (3) imaging, omics, and other applications. A 
summary is presented in Table 2. Studies using simpler, 
borderline-ML methods are excluded from the main text but 
included in Table 2 and Figure 3.

Outcome Prediction
Survival and Quality of Life
In a series of studies, Oztekin, Delen, Amini and colleagues 
demonstrated the value of ML for outcome prediction. Initially, 
they showed that ML outperformed expert–selected variables and 
traditional statistical models in predicting 9-year graft survival after 
heart–lung transplantation, identifying more relevant variables and 
relationships [12]. They applied logistic regression (Supplementary 
Text, Figure 3A.2), decision trees (DTs), and artificial neural 
networks (ANNs). DTs (Figure 3A.6) are interpretable models 
that recursively split data to form rule-based trees. They are 
sensitive to noise and require pruning (removing unnecessary 
parts) to improve generalizability [1, 2, 4, 5, 8]. ANNs 
(Figure 3A.8) are algorithms inspired by the brain (Figures 
4A–D). The simplest form, a single-layer perceptron, mimics a 
biological neuron. Adding hidden layers, referring to synaptic 
connections creates a multilayer perceptron (MLP) [1, 2, 4, 5, 8]. 
Unlike DTs, ANNs lack interpretability and rely on large datasets, 
therefore, the United Network for Organ Sharing (UNOS) cohort of 
16,604 patients was crucial for this approach [5, 8].

Later, their work was extended to survival estimation, again 
comparing ML with expert-selected and literature-based 
variables. ML outperformed both approaches by retaining 
important predictors overlooked in traditional methods. They 
applied DTs and ANNs, and additionally introduced support 
vector machines (SVMs) [13]. SVMs (Figure 3A.5) are 
algorithms that maximize the margin between classes (distance 
between the decision boundary and the nearest data points from 

FIGURE 1 | Interrelationship between computer science, artificial 
intelligence, machine learning, and data science: a conceptual overview.
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each class). An innovation is the kernel trick, which enables 
SVMs to classify nonlinearly separable data by mapping it into 
higher-dimensional space (Figure 5) [1–5, 8]. Model 
performance was compared using Cox regression 
(Supplementary Text, Figure 3A.3). Subsequently, k-means 
clustering, two-step cluster analysis, and conventional heuristic 
approaches were used to determine the optimal number of 
patient risk groups. Unsupervised k-means clustering 
(Figure 3B.1) groups data into a predefined number of 
clusters based on feature similarity by iteratively assigning 
samples to the nearest centroid (center of a cluster) and 
updating centroids as the mean of assigned samples. It offers 
an unbiased way to explore risk groups [1–5, 8]. In this study, 
three clusters were optimal [13].

In 2011, a DT–based hybrid model was designed to provide an 
interpretable ML approach. However, its accuracy remained low. 
Moreover, using variables predefined from previous studies biased 
the model, potentially missing important interactions [14]. To 
predict quality of life, Genetic Algorithm (GA)-based approaches 
for feature selection were introduced [16], particularly useful for 
complex, feature-rich domains with limited samples as in LTx. 
GAs (Figure 3C.1) are optimization techniques inspired by 
biological evolution, using selection, crossover, and mutation to 
find optimal solutions, e.g., determining representative variables 
[5, 59]. The GA was combined with three classification algorithms: 
SVM, ANN and k-Nearest Neighbors (kNN) (Figure 3A.7). 
Unlike other algorithms, kNN predicts without training, by 
averaging outcomes of the k most similar samples to unseen 
input. Performance depends on data quality, choice of distance 
metric, and k. In high-dimensional data, kNN’s accuracy 
can degrade [1, 2, 5, 8], therefore, combining it with GA is 
appropriate.

Subsequent research performed classification of post-LTx 
survival (≤1 year vs. ≥10 years), incorporating additional 
methods, namely ensemble models such as random forests 
(RF) and gradient boosting trees [21]. Ensemble learning 
combines multiple models to improve predictive accuracy, 
reduce overfitting, and enhance robustness [1, 2, 5, 8]. 
Bagging (bootstrap aggregating) (Figure 3A.10.1) improves 
stability by training on different data subsets [1, 2, 5, 8]. RF 
is a common bagging method that aggregates DTs [1, 5, 8]. 
Boosting (Figure 3A.10.2) builds models sequentially, each 
correcting errors of the previous one [1, 5, 8]. Among all 
models, RF achieved the best performance. To improve 
model transparency, the authors employed an explainable AI 
(XAI) method: SHapley Additive Explanations (SHAP), a 
model-agnostic framework that quantifies each feature’s 
contribution to a prediction by considering all possible 
feature combinations [60]. SHAP identified Hepatitis B 
surface antibody and forced expiratory volume in one 
second (FEV1) as predictors of long-term survival. However, 
methodological limitations warrant consideration. The use of 
binary classification (≤1 year vs. ≥10 years) excluded nearly half 
of the cohort [21]. This neglects intermediate survival, arguably 
the most challenging to predict, which makes the modest 
performance noticeable.

Moro et al. created a DT for survival predictions. Using UNOS 
data, 47 features were identified via stepwise logistic regression, 
assuming linear relationships. Consequently, meaningful 
nonlinear interactions may have been missed, and reducing 
60 to 47 variables offered minimal dimensional or 
computational benefit. The final DT used six key predictors, 
including three postoperative variables, limiting the model’s 
preoperative prognostic utility, despite its interpretability. 

FIGURE 2 | Visualization of Underfitting, Optimal Fitting, and Overfitting in Regression and Classification. The top row illustrates regression settings, where the 
Outcome axis represents a continuous clinical measure (e.g., survival probability, biomarker level), and F1 represents a predictive feature. Every depicted lung represents 
a sample (e.g., patient). Underfitting occurs when the model is too simple to capture the true nonlinear relationship, whereas overfitting occurs when the model follows 
noise instead of the underlying trend. The optimal fit captures the true pattern without modeling random fluctuations. The bottom row shows these concepts in 
classification, where F1 and F2 represent two predictive features, and each lung corresponds to an individual patient belonging to one of two outcome classes (e.g., 
favorable vs. poor outcome). The model’s decision boundary is shown as a dotted line. A linear boundary underfits when classes are not linearly separable. An overly 
complex boundary overfits by tailoring itself to noise and outliers. The optimal fit provides a smooth, generalizable separation between classes.
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FIGURE 3 | Overview of Machine Learning Methods Explained in Chapter 2. Panel (A) Supervised learning methods: A.1 Linear regression; A.2 Logistic regression; A.3 
Cox regression; A.4 Naive Bayes; A.5 Support vector machine; A.6 Decision tree; A.7 k-Nearest Neighbors; A.8 Artificial neural network; A.9 Deep learning; A.10 Ensemble 
methods: A.10.1 Bagging, A.10.2 Boosting, A.10.3 Stacking. Panel (B) Unsupervised learning: B.1 K-means clustering; B.2 Principle component analysis. Panel (C) Advanced 
methods: C.1 Genetic algorithm; C.2 Transfer learning; C.3 Generative adversarial network (GAN). F1-F3: represents features; P1-PC2 represents principle components.
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Eight subgroups (decision nodes) showed distinct survival curves. 
As expected, best outcomes occurred in younger recipients with 
short hospital stays, limited ventilation support, and no 
reintubation [25].

To compare survival between increased risk for disease 
transmission (IRD) organ recipients versus non-IRD organ 
recipients, Mark et al. applied RF and Cox regression. As 
Cox regression performed best, it was selected for further 
analysis, which somewhat diminished the novelty of ML 
implementation. Nevertheless, the study offered a data- 
driven perspective to expand the donor pool, demonstrating 
a 7.2% improvement in 5-year survival for IRD lung transplant 
recipients [17].

Unlike the prior study, Tian et al. demonstrated that RF can 
outperform Cox regression, for survival prediction under 
standard conditions, achieving high predictive accuracy. 
Generalizability across subgroups with different diagnoses and 
treatments was reported. However, the single-center design and 
limited sample size may question this [22].

The effectiveness of RF, combined DTs, was also shown by 
Fessler et al., analyzing 284 variables across 12 perioperative 
stages to predict one-year mortality. As presumed, the accuracy 
went up by including information of later stages. Lung allocation 
score (LAS) emerged as top predictor [18].

Primary Graft Dysfunction
A subsequent study by Fessler et al. used gradient boosting to 
predict PGD3, a syndrome linked to adverse outcomes [61]. 
Extracorporeal membrane oxygenation use, along with recipient 
factors, were revealed as top predictors [20]. Due to the short 
length of these papers [18, 20], the information provided on the 
ML implementation is limited. In their most recent paper [28], 

predicting PGD3 at 72h, they offer more information about 
logistic regression and XGBoost, an efficient gradient boosting 
variant, that improves computational memory usage, well-suited 
for large datasets [62]. Fessler’s studies introduce an innovative 
approach by progressively incorporating data from successive 
transplant phases, allowing the prognosis to be refined at 
each stage.

Michelson et al. similarly predicted PGD3 using pretransplant 
data, enabling potential application in patient selection and 
pretransplant counseling. From 100 features, Least Absolute 
Shrinkage and Selection Operator (LASSO) (Supplementary 
Text) selected 11 predictors. Among four models, kNN 
performed best and was released as open-access risk 
calculator [26].

With data from 802 patients, Xia et al. evaluated nine 
algorithms. RF classified PGD3 best. SHAP identified blood 
loss as important, but prior feature selection, based on linear 
relation assumption, may have introduced selection bias [27].

Other Outcome Parameters
Using a small, unbalanced dataset, Tian et al. developed 
eight ML models combined with seven feature selection 
methods to predict airway stenosis requiring clinical 
intervention. Key predictors in RF included postoperative 
6-minute walk test and indication for LTx. This model 
could guide postoperative follow-up [24].

Braccioni et al. assessed how clinical parameters relate to 
symptom severity during exercise testing after LTx. Boruta, a 
feature selection method based on RF [63], revealed associations 
for limited exercise capacity: dyspnea correlating with peak 
ventilation and work rate, muscle effort with breathing 
reserve, and muscle pain with VO2 peaks. These findings 

TABLE 1 | Common metrics used in machine learning.

Number Metric ML type Description Common use case

1 Accuracy Classification Proportion of correct predictions among total samples General performance for balanced 
binary/multiclass classification

2 Mean squared error (MSE) Regression Average of squared differences between predicted and true 
values

Penalize large errors

3 Root mean squared error (RMSE) Regression Square root of MSE Interpretability with penalties
4 Precision Classification Proportion of true positives among predicted positives When false positives are costly (e.g., 

spam filter)
5 Recall/sensitivity Classification Proportion of true positives among actual positives When false negatives are costly (e.g., 

disease detection)
6 Specificity Classification Proportion of true negatives among actual negatives When false positives must be avoided 

(e.g., excluding innocent suspects)
7 Area under the receiver operating 

characteristic curve (AUROC)
Classification Area under the receiver operating characteristic curve, 

combination recall and false positive rate (sometimes 
interchanged with AUC)

Binary classification, model comparison

8 F1-score Classification Harmonic mean of precision and recall Imbalanced classification
9 Confusion matrix Classification Table showing true positives, false positives, true negatives 

and false negatives
Detailed prediction breakdown

10 Gini index Classification Measure of impurity used in splits Decision tree splitting criterion
11 C-statistic (concordance) Classification Probability that the model correctly ranks outcomes Ranking in survival analysis
12 R2 score Regression Explained variance ratio Model fit evaluation
13 Silhouette score Clustering Cohesion and separation of clusters Cluster validation
14 Intraclass inertia Clustering Compactness of the clusters, average of the distances 

between the centroids and the datapoints
Cluster validation

Transplant International | Published by Frontiers February 2026 | Volume 38 | Article 15640 5

Vercauteren et al. Machine Learning in Transplantation



TABLE 2 | Overview of Studies about machine learning in lung transplantation.

Autor(s) 
(Year)

Study population Input Output Model(s) Metrics Train/Validation/ 
Test and 
validation 
method

Transparency 
and 

explanations of 
ML 

(mathematical 
background, 

architecture, . . .)

Outcome prediction
Troiani and 
Carlin [11]*

30 LTx recipients (over 
60 subject-years)

2-week epochs of 
daily/biweekly 
FEV1 and symptom 
data

Prediction of acute 
bronchopulmonary 
disease events

Heuristic rule- 
based, classical 
linear-logistic 
regression, 
Bayesian 
models

Bayesian model 
AUROC = 0.882 
Sensitivity = 0.886 
Specificity = 0.955

2-fold cross- 
validation

Detailed model 
descriptions, 
Bayesian priors 
disclosed, 
transparency 
limited in heuristic 
model

Oztekin et al. 
(2009) [12]

16604 heart-LTx patients 
(UNOS)

283 features 
(demographics, 
health-related and 
transplant-related)

9-year graft survival DTs, ANNs, 
logistic 
regression, Cox 
regression

MLP 
Accuracy = 0.859 
Sensitivity = 0.847 
Specificity = 0.869

10-fold cross- 
validation

Hazard function, 
metrics, k-fold 
cross-validation, 
no insight in ML 
models (brief 
explantation)

Delen 
et al. [13]

106398 thoracic patients 
(UNOS)

565 features 
(demographics, 
health-related and 
transplant-related)

Graft survival time, risk 
groups

SVM, 
ANN,DTs, Cox 
regression and 
k-means, 2- 
step, heuristic 
clustering

SVM 
MSE = 0.023 
R2 = 0.879 
k-means clustering 
3 risk groups 
intraclass intertia = 
1,68 × 10−8

10-fold cross- 
validation

Hazard function, 
metrics, k-fold 
cross-validation, 
no insight in ML 
models (brief 
explantation)

Oztekin 
et al. [14]

6512 LTx records 
(UNOS)

25 features Predict LTx success 
(graft survival and quality 
of life)

Structural 
equation 
modeling 
(meaning: 
Statistical 
method 
showing how 
different factors 
are related to 
each other, 
including 
hidden (latent) 
ones) DT

R2 = 0.68 10-fold cross- 
validation

Mathematical 
methodology: 
Structural 
equation modeling 
and composite 
scores, metrics, 
k-fold cross- 
validation

Pande 
et al. [15]

509 LTx patients 
(9471 FEV1 evaluations 
over time)

Time-series FEV1, 
demographic and 
clinical features

Predict FEV1 over time 
and key feature-time 
interactions

Boosted DTs RMSE = 
0.115–0.421

In sample cross- 
validation

Models, 
algorithms, cross- 
validation, metrics

Oztekin 
et al. [16]

3684 LTx records 
(UNOS)

147 features Predict quality of life 
post LTx

GA-kNN, GA- 
SVM, and 
GA-ANN

GA-SVM 
Accuracy = 0.994 
Precision = 
0.991–0.997 
Sensitivity = 
0.992–0.998 
Specificity = 
0.996–0.998 
F1 = 0.991–0.995

5-fold cross- 
validation

Normalization, 
GA, k-fold cross- 
validation, metrics

Mark et al. [17] LTx candidates: 
1010 IRD, 12013 non- 
IRD and 19217 waitlist 
(UNOS)

Top 5 (out 
of >100 features): 
recipient and donor 
characteristics, IRD 
status, time on 
waitlist (UNOS)

Compare 5-year survival 
for IRD vs. non-IRD 
organ offers

Cox 
Proportional 
Hazards, 
random forests 
(500 DTs)

7.2% 5-year 
survival with IRD 
lung vs. non-IRD 
69.9% of 
simulations favored 
IRD lung 
RMSE = 5.3

5-fold cross- 
validation

RF details

Fessler 
et al. [18]

410 double LTx 
recipients

284 patient, donor, 
and surgical 
variables in 
12 stages

Predict one-year post- 
transplant mortality

RF AUROC = 
0.65–0.75

Train/test (80/20), 
40 repetitions

Limited

(Continued on following page)
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TABLE 2 | (Continued) Overview of Studies about machine learning in lung transplantation.

Autor(s) 
(Year)

Study population Input Output Model(s) Metrics Train/Validation/ 
Test and 
validation 
method

Transparency 
and 

explanations of 
ML 

(mathematical 
background, 

architecture, . . .)

Braccioni 
et al. [19]

24 bilateral LTx recipients 24 recipients 
variables, 
incremental cardio- 
pulmonary exercise 
testing

Associations between 
the severity of 
symptoms (dyspnea, 
muscle effort, muscle 
pain) and exercise 
testing parameters

RF/Boruta - 5-fold cross- 
validation 
(10 resamples)

Limited but short 
explanation RF/ 
Boruta

Fessler 
et al. [20]

478 double LTx 
recipients

6 recipient, donor, 
intraoperative 
features in 9 stages

Predict PGD3 Gradient 
boosting 
algorithm, 
SHAP

AUROC = 0.7–0.87 Train/test (80/20) Limited

Amini et al. [21] 9864 adult US LTx 
recipients

171 features 
(demogragics, 
clincal, transplant)

Classify short-term 
(≤1 year) vs. long-term 
(≥10 years) survival 
after LTx

RF, DT, 
gradient 
boosted trees, 
kNN, ANN, 
SVM, logistic 
regression, 
SHAP

RF 
Accuracy = 0.7792 
Sensitivity = 0.7626 
Specificity = 0.7958 
AUROC = 0.79

10-fold cross- 
validation

SHAP

Tian et al. 
(2023) [22]

504 adult LTx recipients 16 out of 22 clinical 
variables: recipient, 
donor, surgical and 
post-op factors

Predict overall survival RF, Cox 
regression

RF integrated 
AUROC = 0.879 
(better than Cox: 
Integrated 
AUROC = 0.658)

Train/test split (70/ 
30), bootstrapping 
(1000 resamples)

Variable 
importance, overal 
limited

Melnyk et al. 
[23]*

369 patients, 125 cases 11 significant out of 
all preoperative 
recipient 
characterstics, 
procedural 
variables, 
perioperative blood 
product 
transfusions, and 
donor 
charactersitics

Relation between blood 
transfusion and 
morbitity (6 endpoints)

Elastic Net 
regression

Accuracy = 0.765 
Sensitivity: 0.80 
Specificity: 0.69

Cross-validation 
(500 repeats)

Limited

Tian et al. [24] 381 LTx patients 15 features: 
recipient and 
postoperative

Prediction of airway 
stenosis requiring 
clinical intervention

56 models: 
7 features 
selection 
methods 
combined with 
8 ML models

RF + determination 
coefficient 
AUROC = 0.760 
Sensitivity = 0.782 
Specificity = 0.689

Bootstrap 
validation 
(1000 resamples)

Limited

Moro et al. [25] 27296 LTx recipients 
(UNOS)

60 recipient and 
donor data

1-, 5-, 10-year survival 
propabilities

DT; stepwise 
logistic 
regression for 
variable 
selection

Logisitic regression 
Accuracy = 0.653 
8 subgroups (DT)

Train/test split (70/ 
30), 10-fold cross- 
validation

Logistic model, DT 
given, training 
explantation 
limited

Michelson 
et al. [26]

576 bilateral LTx 
recipients (UNOS, Unet, 
local)

11 out of 100 donor, 
recipient 
pretransplant 
features

Prediction of 
PGD3 within 72 h 
after LTx

LASSO + kNN, 
logistic 
regression, 
XGBoost, SVM, 
SHAP

kNN 
AUROC = 0.65 
F1 = 0.62

Train/test split (75/ 
25), 5-fold cross- 
validation (training 
set 50 resamples)

TRIPOD, 
preprocessing but 
limited info about 
ML, model hosted 
at pgdcalc. 
wustl.edu

Xia et al. [27] 802 LTx recipients 9 out of 37 features: 
Clinical

Predict PGD3 within 
72 h post-transplant

9 models (DT, 
kNN, MLP,RF, 
SVM, . . .), 
SHAP, LASSO

RF: Internal 
validation 
AUROC = 0.7975 
Sensitivity = 0.7520 
Specificity = 0.7313

Train/validate/test 
split (56/24/20), 5- 
fold cross- 
validation

Limited, but 
visualizations and 
some information 
about RF

(Continued on following page)
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TABLE 2 | (Continued) Overview of Studies about machine learning in lung transplantation.

Autor(s) 
(Year)

Study population Input Output Model(s) Metrics Train/Validation/ 
Test and 
validation 
method

Transparency 
and 

explanations of 
ML 

(mathematical 
background, 

architecture, . . .)

Fessler et 
a. [28]

477 LTx patients 66 features in 
9 stages

Predict PGD3 at 72h XGBoost, 
logistic 
regression, 
SHAP

XGBoost: 
AUROC = 0.84 
Sensitivity = 0.81 
Specificity = 0.68

Train/test split (80/ 
20) 
(500 resamples), 
grid search 
approach, 5-fold 
cross-validation

XGBoost model 
hyperparameter 
tuning

Organ allocation
Dueñas- 
Jurado 
et al. [29]

404 LTx cases 36 donor-recipient 
variables (clinical, 
surgical, functional)

Predict 6-month graft 
survival; optimize donor- 
recipient matching

Linear 
regression initial 
covariates and 
product units 
neural networks 
(LRIPU) model

- Train/test1/test2 
(70/13/17)

Model and 
coefficients

Zafar et al. [30] 15124 double LTx 
recipients (UNOS)

19 out of 
42 recipient, donor, 
and transplant 
variables

Predict 1-, 5-, 10-year 
survival and half-life; and 
classify into risk clusters

Cox-LASSO, 
backward Cox 
and RF-Cox, 
clustering via 
expectation- 
maximization 
(LAPT)

Cox-LASSO 
C statistic for 1-year 
survival = 0.67 
C statistic for 5-year 
survival = 0.64 
C statistic for 10- 
year survival = 0.72

Train/test (70/30) Limited

Brahmbhatt 
et al. [31]

19900 adult LTx patients 
(UNOS)

Pre-transplant 
recipient data

Prediction of 1- and 3- 
year post-transplant 
mortality

LAS, Houston 
Methodist 
model, clinician 
model, 
LASSO, RF

RF 
AUROC = 0.62 
Specificity = 0.76 
Sensitivity = 0.44 
(similar to all other 
models)

Train/test split 
(85/15)

Limited

Sage et al. [32] 725 EVLP donor lung 
assessments

Recipient, donor 
and 24 EVLP 
variables

Predict transplant 
suitability/ 
extubation <72h

XGBoost 
(InsighTx 
model), RF

AUROC: 0.75–0.85 Train/test (80/20), 
5-fold cross- 
validation

Code shared

Pu et al. [33] 4610 subjects Demographics and 
computed 
tomography scans

Prediction of left/right/ 
total lung volume, 
thoracic cavity volume, 
and heart volume to 
improve size matching

CNN, 8 ML 
models (Incl. 
RF, kNN, DTs)

MLP right and left 
lung, thoracic cavity 
R2 = 0.501–0.628 
XGBoost heart and 
total lungs 
R2 = 0.430–0.514

Train/validate/test 
(80/10/10), 10- 
fold cross- 
validation

10-Fold cross- 
validation, 
visualisations, 
hyperparameters

Dalton 
et al. [34]

13204 LTx candidates 
and 20763 recipients 
(SRTR)

Demographics and 
clinical features

Prediction of waitlist 
mortality at 1, 3, 
6 months and post- 
transplant survival at 1, 
3, and 5 years

Cox regression 
(LAS/lung 
Composite 
allocation 
score), re- 
estimated 
models, RF, 
linear 
discriminant 
analysis, logistic 
regression, 
boosted DT

Waitlist 
AUROC = 
0.85–0.93 
Transplant survival 
AUROC = 
0.56–0.62

10-fold cross- 
validation

Model explanation 
in the authors’ 
Supplementary 
Material

Imaging, omics and other applications
Bartholmai 
et al. [35]

119 subjects with 
interstitial lung disease

High-resolution 
computed 
tomography, 
pulmonary function 
tests, clinical data

Quantitative 
classification of 
interstitial lung disease 
patterns (emphysema, 
ground glass, 
honeycombing, normal 
and reticular) with 
correlation to physiology 
and clinical outcomes

Computer 
aided lung 
Informatics for 
pathology 
evaluation and 
rating 
(CALIPER), 
ANN, Bayes, 
SVM, kNN

Analysis of similarity 
within a cluster 
R = 0.962

- Limited, feature 
extraction

(Continued on following page)
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TABLE 2 | (Continued) Overview of Studies about machine learning in lung transplantation.

Autor(s) 
(Year)

Study population Input Output Model(s) Metrics Train/Validation/ 
Test and 
validation 
method

Transparency 
and 

explanations of 
ML 

(mathematical 
background, 

architecture, . . .)

Barbosa et al. 
(2017) [36]

176 LTx patients Quantitative 
Computed 
tomography scans, 
PFT, semi- 
quantitative 
Computed 
tomography scores

Diagnose BOS Multivariate 
logistic 
regression, 
SVM, PCA

Quantitative 
Computed 
tomography SVM 
PCA 
AUROC = 0.817

10-fold cross- 
validation 
(90%–10%)

Limited

Weigt 
et al. [37]

17 LTx recipients, 1 year 
post-LTx BAL samples

BAL cell pellet 
transcriptome 
(microarray); 
40 genes with 
differential 
expression 
(immune-related)

Prediction of incipient 
CLAD within 2 years 
post-BAL

Unsupervised 
hierarchial 
clustering, 
SVM, PCA

SVM 
Accuracy = 0.941

Leave-one-out 
cross-validation

Limited

Barbosa 
et al. [38]

71 LTx recipients Quantitative 
Computed 
tomography 
scans, PFT

Predict eventual onset 
of BOS

SVM Accuracy = 85% 
(3 features); 
sensitivity = 73.3%; 
specificity = 92.3%

Train/test (80/ 
20 or 90/10) with 
500 or 
100 random 
combinations

Limited

Halloran 
et al. [39]

242 single-piece LTx 
biopsies (transbronchial 
biopsies)

Gene expression 
(microarrays), 
453 rejection- 
associated 
transcripts

Identify disease states/ 
phenotypes: normal, 
T cell mediated 
rejection, antibody 
mediated rejection, 
injury

Unsupervised 
archetypal 
analysis, PCA

- - Limited, sum of 
scores

Cantu 
et al. [40]

113 LTx patients Clinical, recipient, 
donor and 
transplant features, 
preprocurement 
donor lung biopsies 
(gene expression of 
innate immunity: 
Toll-like receptor 
and nod-like 
receptor pathways)

Prediction of PGD3 at 
48–72h post-transplant

Feed-forward 
deep learning

Toll-like receptor 
AUROC = 0.776 
Sensitivity = 0.786 
Specificity = 0.706

5-fold cross- 
validation

Architecture DL 
model

Halloran 
et al. [41]

243 mucosal biopsies 
from 214 LTx patients

Gene expression 
(microarrays), 
315 rejection- 
associated 
transcripts (RATs), 
11 pathogenesis 
based transcripts

Classification into 
molecular phenotypes: 
normal, rejection, late 
inflammation, injury

Unsupervised 
archetypal 
analysis, PCA

- - Limited, metrics in 
the authors’ 
Supplementary 
Material

Halloran 
et al. [42]

457 transbronchiale and 
314 mucosale biopsies

Gene expression 
(microarray), 
rejection- 
associated 
transcripts

Prediction of graft 
survival based on 
molecular T cell 
mediated rejection 
phenotype

Unsupervised 
archetypal 
analysis, 
PCA, RF

- - Limited, metrics in 
the authors’ 
Supplementary 
Material

Dugger 
et al. [43]

49 LTx recipients (small 
airway brushes and 
transbronchial biopsies)

RNAseq and digital 
RNA counts

Diagnosis of CLAD and 
prediction of graft 
survival

LASSO logistic 
regression, RF

RF airway brushing 
AUROC = 0.84 
Transbronchial 
biopsies 
AUROC = 0.62

Leave-one-out 
cross-validation

Limited

Berra et al. [44] 40 LTx patients (BAL) Protein expession 
(incl. Angiotensin II- 
related)

CLAD development Linear 
discriminant 
analysis, SVM, 
Bayes, 
quadratic 
discriminant 
analysis

CLAD vs. no-CLAD 
AUROC = 0.86 
CLAD development 
AUROC = 0.97

Leave-one-out 
cross-validation

Limited

(Continued on following page)
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TABLE 2 | (Continued) Overview of Studies about machine learning in lung transplantation.

Autor(s) 
(Year)

Study population Input Output Model(s) Metrics Train/Validation/ 
Test and 
validation 
method

Transparency 
and 

explanations of 
ML 

(mathematical 
background, 

architecture, . . .)

McInnis 
et al. [45]

88 CLAD patients 
post-LTx

Computed 
tomography scans

CLAD phenotype 
prediction and graft 
survival prognosis 
based on lung texture 
(ML and radiologist 
scores): Normal, 
hyperlucent, reticular, 
ground-glass, 
honeycomb

Computer- 
aided lung 
Informatics for 
pathology 
evaluation and 
rating, Cox 
regression

Sensitivity: 0.90 
Specificity: 0.71 
Accuracy: 0.75 
AUROC: 0.851

- Limited

Tran-Dinh 
et al. [46]

40 LTx recipients Plasma levels of 
soluble CD31, 
oxygenation ratio 
and respiratory 
sequential organ 
failure assement 
score at 24h/ 
48h/72h

Predict acute cellular 
rejection within 1 year 
after LTx

Deep 
convolutional 
neural network 
using time 
series of 
biomarkers and 
multivariate 
modeling

AUROC = 0.85 
Accuracy = 
0.87 precision = 
0.93 
Recall = 0.33–1 
(depending on 
class)

Stratified k-fold 
cross-validation 
and external test 
set with class 
weighting

Network 
architecture, 
modeling 
methods, time 
series handling 
and statistical 
background

Zhang 
et al. [47]

243 LTx patients 
(mucosal biopsies)

Gene expression 
profiles 
(19420 genes)

Prediction of 4 clinical 
response subtypes 
post-LTx: no rejection, 
rejection, late 
inflammation–atrophy, 
recent injury

Feature 
selection: 
boruta and 
others 
Classifiers: 
SVM, RF, 
kNN, DT

SVM 
Accuracy = 0.992 
(247 genes used)

10-fold cross- 
validation

Metrics

Su et al. [48] 59 LTx recipients, 
181 sputum samples

16S rRNA 
microbiota 
sequencing and 
clinical biomarkers 
(procalcitonin, 
T-lymphocyte 
levels)

Differentiate infection vs. 
acute rejection vs. 
event-free

RF, linear 
discriminant 
analysis

Infection vs. event- 
free 
AUROC = 0.898 
Rejection vs. event- 
free 
AUROC = 0.919 
Infection vs. 
rejection 
AUROC = 0.895

10-fold 
crossvalidation

Limited

Watzenboeck 
et al. [49]*

19 LTx recipients (BAL) Microbiome (16S 
rRNA), 
metabolome, 
lipidome, BAL cell 
composition, clinical 
data, lung function 
tests

Predict FEV1 changes at 
30/60/90 days (lung 
function trajectory)

ridge regression 
models

30 days r = 0.76 
60 days r = 0.63 
90 days r = 0.42

Nested cross- 
validation (train: 3- 
fold cross- 
validation, test: 4- 
fold cross- 
validation)

Limited

Stefanuto 
et al. [50]

35 LTx recipients, 58 BAL 
and blind bronchial 
aspirate samples

VOC profiles 
(386 features, 
reduced to 
20 features)

Predict severe (PGD3) 
vs. mild/no PGD 
(PGD0–2)

SVM AUROC = 0.90 
Accuracy = 0.83 
Sensitivity: 0.63 
Specificity: 0.94

Train/test (50/50), 
leave-one-out 
cross-validation

Limited, 
visualisation of ML 
pipline

Qin et al. [51] 97 human LTx paired 
biopsies (pre/post-LTx)

Expression profiles 
(microarrays, incl. 
transcriptomics for 
cuproptosis-related 
genes)

Diagnosis of lung 
ischemia–reperfusion 
injury, identification of 
cuproptosis-related 
biomarkers

LASSO, SVM + 
recursive 
feature 
elimination, RF, 
logistic 
regression

15 biomarker, for 
each 
AUROC >0.8 
Logisitic regression 
AUROC = 0.96

Train/test (53/47), 
validation in rat 
model

Limited

Wijbenga et al. 
[52]*

152 LTx recipients Exhaled breath via 
SpiroNose (7- 
sensor eNose); 
patient and clinical 
characteristics

Diagnosis of CLAD and 
discrimination of 
phenotypes

Partial least 
squares 
discriminant 
analysis, logistic 
regression

AUROC = 0.94 
Specificity = 0.78 
Sensitivity = 1 
Discrimination BOS 
vs. Restrictief 
allograft syndroom 
AUROC = 0.95

Train/test (67:33); 
10-fold cross- 
validation

Limited

(Continued on following page)
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linked reduced aerobic capacity and high ventilatory cost to 
symptom severity. DT visualizations offered interpretable 
insights to guide exercise prescriptions [19]. Despite the small 
dataset (n = 24), the authors justified using ML, noting the 
method performs well in small, high-dimensional datasets 
without assuming normality or independence. Nonetheless, 

small cohorts increase overfitting risk and limit generalizability 
of the findings.

To analyze repeated FEV1 measurements after LTx, Pande 
et al. developed a longitudinal model, handling challenges as 
within-subject correlation, unequal time intervals, and 
unbalanced designs. Although FEV1 typically declines over 

TABLE 2 | (Continued) Overview of Studies about machine learning in lung transplantation.

Autor(s) 
(Year)

Study population Input Output Model(s) Metrics Train/Validation/ 
Test and 
validation 
method

Transparency 
and 

explanations of 
ML 

(mathematical 
background, 

architecture, . . .)

Ram et al. [53]* 80 out of 100 donor lung 
pairs (Computed 
tomography-imaged ex 
situ)

Ex vivo CT scans, 
donors and 
recipient features

Donor lung suitability 
classification; prediction 
of ICU stay, PGD3 and 
2-year CLAD

Dictionary 
learning 
(supervised ML) 
seen as a 
simpler 
technique

Accuracy = 0.727 
AUROC = 0.743 
F-score = 0.75 
Precision = 0.78 
Recall = 0.74

Train/test split 
(18/82)

In their 
Supplementary 
Material: 
explanation and 
formulas 
dictionary 
learning, sparse 
coding, 
classification, 
training

Chao et al. [54] 113 donor lungs 
evaluated with ex vivo 
lung perfusion

Chest radiographs, 
functional EVLP 
data

Predict transplant 
suitability and early post- 
transplant ventilation 
outcomes

Extreme 
gradient 
boosting 
(XGBoost)

Combined model 
AUROC = 0.807 
Sensitivity = 0.76 
Specificity = 
0.89–0.94

75%–25% 
training-test split, 
repeated with 
30 random seeds

Limited

Gouiaa et al. 
(2024) [55]

40 LTx patients Plasma levels of 
soluble CD31, 
oxygenation ratio 
and respiratory 
sequential organ 
failure assement 
score at 24h/ 
48h/72h

Predict acute cellular 
rejection within 1 year 
after LTx

Taelcore 
(topological 
autoencoder, 
ANN classifier) 
compared to 
other models 
(incl. RF, kNN)

MSE = 0.307 
RMSE = 0.0.38

Stratified k-fold 
cross-validation; 
training/test split 
75/25%

Topological loss 
function, 
persistence 
homology, 
entropy, rips 
filtration, metrics, 
short explanation 
other models, 
open-source code 
(GitHub)

Gao et al. [56] 113 + 97 lung graft 
biopsy samples

38 signature genes Prediction of 
ischemia–reperfusion 
injury and PGD

Weighted gene 
coexpression 
network 
analysis, 
LASSO, RF and 
nomogram

AUROC >0.70 for 
all 4 genes

LASSO: 10-fold 
cross-validation

Limited, small 
explanations of 
models

Chen et al. 
[57]*

160 LTx patients Demographics, LTx 
data and 69 lab 
indicators

Predict time to first 
rejection

LASSO 
regression, 
multivariate Cox 
model

1 year 
AUROC = 0.799 
2 years 
AUROC = 0.757 
3 years 
AUROC = 0.892

Train/test (70/30) 
10-fold cross- 
validation

Limited

Choshi 
et al. [58]

117 + 6 LTx patients 
(87112 datapoints)

36 clinical factors, 
time series data of 
tacrolimus doses 
and route of 
administration

Predict tacrolimus 
trough levels

Multivariate 
long short-term 
memory: an 
improved RNN, 
SHAP

R2 = 0.67 
Tacrolimus trough 
levels within ±30% 
of actual = 88.5%

Train/validate/test 
(80/10/10)

Metrics

Partitioned in “outcome prediction,” “organ allocation” and “Imaging, omics and other applications,” in chronological order. If an article was not discussed in the text, an asterisk is 
placed next to it. If multiple models were tested, metrics were reported for best-performing ML methods. ANN, Artificial Neural Network; AUROC, Area Under the Receiver 
Operating Characteristic Curve; BAL, Bronchoalveolar Lavage; BOS, Bronchiolitis Obliterans Syndrome; CLAD, Chronic Lung Allograft Dysfunction; DL, Deep Learning; DT, 
Decision Tree; EVLP, Ex Vivo Lung Perfusion; FEV1, Forced Expiratory Volume in one second; GA, Genetic Algorithm; IRD, Increased Risk for Disease Transmission; kNN, 
k-Nearest Neighbors; LAPT, Lung Transplantation Advanced Prediction Tool; LAS, Lung Allocation Score; LASSO, Least Absolute Shrinkage and Selection Operator; LTx, Lung 
Transplantation; ML, Machine Learning; MLP, Multilayer Perceptron; MSE, Mean Squared Error; PCA, Principal Component Analysis; PFT, Pulmonary Function Test; PGD, 
Primary Graft Dysfunction; RF, Random Forest; RMSE, Root Mean Squared Error; RNN, Recurrent Neural Network; SHAP, SHapley Additive Explanation; SVM, Support Vector 
Machine; UNOS, the United Network for Organ Sharing; VOC, Volatile Organic Compound.
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time, patterns vary with individual factors. The method was 
clearly described and implemented in an R package [15].

Overall, the studies reviewed above show the potential of ML 
in LTx, but the applications stay rather limited. Stronger tools, 
e.g., deep learning (DL), could be implemented, as seen in section 
Organ Allocation [33].

Organ Allocation
LTx faces suboptimal organ allocation, causing long wait times 
and significant candidate mortality [64]. Varying donor selection 
criteria across centers limits organ availability. Allocation studies 
suffer from bias, as unaccepted organs are absent in training 
datasets. Unlike other transplants with comprehensive donor- 
recipient risk stratification, LTx allocation largely neglects the 
combined influence of factors [30].

To address these challenges, Zafar et al. developed the LTx 
Advanced Prediction Tool (LAPT). Based on 15,124 UNOS cases, 
LAPT grouped patients into low-, medium-, and high-risk 
subsets. LAPT outperformed LAS by predicting 1-, 5-, and 10- 
year survival and graft half-life for donor-recipient matches. This 
web-based tool enables data-driven allocation beyond recipient- 
centric systems [30].

Duen􏽥as-Jurado et al. combined logistic regression with ANNs 
for donor-recipient matching. They incorporated donor, recipient 
and perioperative variables to predict 6-month graft survival, 
claiming to outperform traditional methods, although metrics 
were not reported. Key predictors included low pre-transplant 
CO2, while prolonged donor ventilation, older donor and 
recipient age were linked to poorer outcomes [29].

To assess the suitability of donor lungs, Sage et al. created 
InsighTx, a RF model integrating ex vivo lung perfusion (EVLP) 
and other variables, offering a quantitative approach to evaluate and 

improve lung utilization [32]. However, its primary endpoint, 
extubation time, serves only as a short-term proxy for success 
and does not fully capture longer-term outcomes.

Pu et al. developed eight ML models using donor 
demographics to predict lung, heart, and thoracic cavity 
volumes, to improve donor-recipient size matching [33]. The 
performance of these approaches was benchmarked against 
convolutional neural network (CNN)-based image 
segmentation models, which were used to generate the 
volumetric ground truth. CNNs are a class of DL 
(Figure 3A.9), referring to ANNs with multiple hidden layers, 
designed to process structured grid-like data like images. They 
use filters to detect local structures (e.g., edges) and combine 
them to recognize shapes. Like other DL models, it requires large 

FIGURE 5 | Kernel Trick for Nonlinearly Separable Data in Feature Space 
to Linearly Separable Data. By applying a kernel function, the data are 
transformed into a higher dimension, where a separating hyperplane can be 
found. This enables Support Vector Machines to classify complex 
patterns that cannot be separated in the original feature space. F1, 
F2 represents features. X1, X2, X3 represents axis of projections in a 
higher dimension.

FIGURE 4 | Comparison between biological neurons and artificial neural networks. Panel (A) Biological neuron receiving input via dendrites and sending output via 
axon; Panel (B) Artificial neuron, a perceptron, receiving input from features (F1-F3) and after mathematical manipulation sending output as Yj (binary output); Panel (C) 
Connection of multiple neurons via synapses; Panel (D) Artificial neural network.

Transplant International | Published by Frontiers February 2026 | Volume 38 | Article 15640 12

Vercauteren et al. Machine Learning in Transplantation



labeled datasets and significant processing power [1–3, 8]. The 
best-performing model was a MLP for individual lungs and 
thoracic cavity estimates. These non-imaging-based volume 
predictions may enhance allocation [33].

In contrast to these optimistic findings, Brahmbhatt et al. 
concluded that LAS, clinician-based models, LASSO, and RF are 
not sufficiently accurate to predict post-LTx survival. LAS 
overestimated mortality in high-risk patients and the AUROC 
of the Houston Methodist model was not achieved, highlighting 
challenges of reproducibility and possible overfitting in earlier 
literature. Predictive performance was not improved by ML, 
disease-specific models, or donor variables [31].

Similarly, Dalton et al. reported that LAS refinement and 
advanced techniques did not improve performance. Seven models 
were evaluated with waitlist and post-transplant data to predict 
waitlist mortality or post-transplant survival. While waitlist 
models showed strong discrimination, all post-transplant models 
performed poorly [34]. A possible solution is integrating images or 
biological markers. Studies employing these approaches are 
examined in section Imaging, Omics and Other Applications.

Imaging, Omics and Other Applications
Barbosa et al. investigated quantitative CT (qCT) to diagnose 
bronchiolitis obliterans syndrome (BOS), a form of CLAD. 
Logistic regression and SVM were used to compare qCT metrics, 
pulmonary function tests (PFT), and semi-quantitative imaging 
scores as input. To reduce qCT dimensionality, principal 
component analysis (PCA) (Figure 3B.2) was applied, projecting 
the data onto components capturing the highest variance while 
minimizing information loss [1, 2, 5, 8]. PCA of qCT together with 
PFT outperformed all models. However, BOS diagnosis relied solely 
on chart-reviewed PFT decline, creating circularity, lacking 
pathological confirmation, and potentially biasing comparisons 
between qCT- and PFT-based models [36]. In a subsequent 
study, qCT features including lobar volumes, airway volumes, and 
airway resistance differed significantly in BOS patients, even at 
baseline. Using SVM, they constructed classifiers in one-, two-, 
and three-dimensional feature spaces. Remarkably, with only 
three qCT parameters, the model achieved 85% accuracy in 
predicting BOS [38]. Bartholmai et al. also used qCTs, to develop 
the CALIPER platform for interstitial lung diseases. They applied 
different ML methods to categorize lung parenchyma into five 
patterns, challenging even for expert readers to distinguish. 
CALIPER provided 3D visualizations for tracking of disease 
burden [35]. Later, McInnis et al. tested CALIPER to distinguish 
CLAD phenotypes and predict graft survival. Both CALIPER and 
radiologist scores independently predicted graft failure, with 
CALIPER enabling reproducible phenotyping and early 
prognostication without requiring expiratory CT [45]. An 
XGBoost model based on X-rays and perfusion data from EVLP 
was developed to predict transplant suitability and ventilation 
duration post-LTx. Abnormalities were scored per lobe and 
correlated with oxygenation, compliance and edema. SHAP 
ranked consolidation and infiltrates as strongest associated with 
function and transplantability [54]. These studies illustrate how 
ML-driven imaging analysis can overcome interobserver 
variability, provide objective and reproducible quantification, 

reduce human workload, and enable more accurate, scalable 
assessment of graft injury.

Tran-Dinh et al. developed a model to predict acute cellular 
rejection using soluble CD31 (sCD31) as biomarker. From only 
forty recipients, sCD31 levels were combined with recipient 
haematosis in a CNN model [46]. The authors claim their 
model uses concepts similar to transfer learning (Figure 3C.2), 
where a model trained on one task is adapted to another, valuable in 
data-scarce settings [1, 2]. However, this is questionable, as their 
network was trained from scratch rather than optimized from a 
pretrained model. In another study, a topological autoencoder 
(Taelcore) was created to improve these predictions by capturing 
underlying data structures. Applied to the same dataset, 
dimensionality reduction with Taelcore achieved more accurate 
predictions than methods like PCA [55]. Likewise, features 
extracted by Taelcore lack biological interpretability.

To predict tacrolimus trough levels (TTLs) in LTx patients, 
Choshi et al. developed a long short-term memory–based Recurrent 
Neural Network (RNN), a DL model handling sequential data. This 
approach relied on clinical inputs identified by SHAP, including 
previous TTLs and tacrolimus doses. The model captured temporal 
patterns in dosing and drug response, enabling individualized 
immunosuppressant management [58]. Yet, its accuracy may 
diminish in real-world patient settings where missed doses and 
irregular timing are common.

A gene expression–based DL classifier by Cantu et al. used 
preprocurement donor lung biopsies to predict PGD3. Their Toll- 
like receptor model outperformed clinical covariates [40], 
demonstrating strong discriminative ability and indicating donor 
innate immune activation as a key driver of PGD, though the analysis 
was limited to two pathways. Gao et al. also used transcriptomic data 
in different algorithms. Four neutrophil extracellular traps-related 
hub genes were identified as drivers of ischemia-reperfusion injury. 
Three of these were validated in clinical samples, related with PGD 
development [56]. Furthermore, transcriptomic data were used to 
explore cuproptosis, a form of cell death, as a potential mechanism in 
ischemia-reperfusion injury. Three methods (LASSO, SVM, RF) 
recognized critical biomarkers, with good performance. 
Functional enrichment linked these genes to immune regulation 
and cell death, while immune infiltration analysis revealed 
associations with distinct immune cell subsets [51].

Using unsupervised ML on LTx transbronchial biopsies, Halloran 
et al. defined four rejection archetypes. PCA linked T-cell mediated 
rejection (TCMR) and injury to T cell and macrophage transcripts, 
and antibody-mediated rejection-like to endothelial markers [39]. 
They also showed that this method worked for mucosal biopsies [41]. 
However, because mucosal biopsies were obtained only during 
protocol or clinically indicated bronchoscopies, the sampling may 
be biased toward unwell patients, limiting generalizability to 
asymptomatic recipients. Molecular TCMR was associated with 
future graft loss. Molecular scores outperformed clinical variables 
in RF and remained robust even in low-surfactant or mucosal 
samples [42]. Across these studies, Halloran et al. demonstrate 
that molecular profiling of biopsies provides a more biologically 
coherent assessment of rejection than histology, although the work 
remains limited by sampling bias, nonspecific injury signals, and 
small sample size. Using previously reported mucosal biopsy data 
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[41], Zhang et al. classified recipients into four rejection-related 
subgroups. Supervised classification achieved high accuracies (likely 
overfitted: more features than samples) and lacked external 
validation. Predictive genes were linked to T cell signaling and 
innate immunity [47].

In another study, lymphocytic bronchitis gene signature in 
transbronchial biopsies and small airway brushings were used to 
predict graft failure and differentiate CLAD from controls. Gene 
expression profiling with RF showed superior diagnostic 
performance for brushings over biopsies, but because brushings 
contain mixed epithelial and leukocyte populations, cell- 
type–specific interpretation remains limited. The lymphocytic 
bronchitis score was elevated in CLAD and associated with 2.4- 
fold increased risk of graft loss [43].

Su et al. analyzed 181 sputum samples from 59 recipients using 
16S rRNA sequencing, classifying samples into “stable”, “infection”, 
and “rejection”. Differences in microbial composition appeared, 
with six genera enriched during acute rejection, suggesting 
immune-modulatory roles. Integrating these genera and clinical 
data in a RF classified well, though repeated samples per patient 
may cause biased results [48]. A study by Weigt described that gene 
expression profiling of cells in bronchoalveolar lavage (BAL) 
revealed an immune activation signature preceding clinical 
CLAD diagnosis. Forty genes were differentially expressed in 
incipient CLAD versus CLAD-free samples, enriched for 
cytotoxic lymphocyte markers. SVM achieved 94.1% accuracy in 
distinguishing only seventeen cases [37]. Berra et al. also used BAL 
samples to predict CLAD and investigate the association with the 
renin–angiotensin system. Although single proteins could not 
discriminate, combinations in ML classifiers can, reflecting ML’s 
strength in modelling beyond human assessment [44].

Another study predicted PGD using volatile organic 
compounds (VOCs) from BAL fluid and bronchial aspirate 
samples. VOC profiling with SVM modeling achieved 83% 
accuracy in distinguishing PGD3 from lower grades. Twenty 
VOCs, associated with lipid peroxidation and oxidative stress, 
were top predictors. Additional analyses linked VOC patterns to 
clinical variables, including donor BMI and Organ Care System, 
indicating potential confounding. Recipient and intraoperative 
factors did not significantly influence VOC profiles [50].

KEY INSIGHTS, FUTURE DIRECTIONS AND 
CONCLUSION

A consistent strength of ML is its ability to integrate many weak or 
noisy features into a meaningful signal, where human interpretation 
or single-variable analyses fail. ML can capture complex, nonlinear 
interactions, reveal hidden patterns, and offer early risk stratification 
that traditional clinical or statistical methods miss. Yet, the 
limitations across studies are strikingly uniform. Most studies are 
small, single-center, only internally validated, and based on 
imbalanced datasets. Sampling bias, missing confounders, and 
heterogeneous data quality further reduce generalizability. 
Compared with kidney, liver, and heart transplantation, where 
ML-based tools are more mature, ML approaches in LTx research 
remains largely underexplored [65–74]. Reporting is often 

insufficient: many papers provide limited mathematical detail 
about model design, preprocessing, hyperparameter tuning, or 
validation, making replication difficult and hindering fair 
comparison across studies. More transparent, standardized 
reporting following frameworks like MI-CLAIM (Minimum 
Information about Clinical Artificial Intelligence Modeling) and 
TRIPOD-AI (Transparent Reporting of a Multivariable prediction 
model for individual Prognosis Or Diagnosis) should be strongly 
encouraged.

Future Directions & Underused 
Advanced Methods
Future directions should include more multimodal datasets, true 
external validation, and the careful use of advanced ML methods. 
Stacking, an ensemble model, could improve performance by 
combining diverse base learners and a meta learner. Generative 
Adversarial Networks (GANs) could augment datasets. They consist 
of a generator that creates synthetic data and a discriminator that 
evaluates authenticity. Through adversarial training, based on 
unlabeled data, both networks iteratively improve, allowing to 
generate realistic data. Although the information content does not 
increase, it enhances model flexibility and generalization. These are 
only two examples of underused ML methods, that could strengthen 
model performance. Post-hoc explanation tools such as Local 
Interpretable Model-agnostic Explanations [5] and SHAP will 
remain essential to ensure that predictions are clinically interpretable.

Conclusion
ML holds major potential in LTx, from improving outcome 
prediction and organ allocation, to imaging and omics-based 
insights. Yet, clinical adoption remains limited due to small, 
single-center datasets and insufficient external validation. 
Enhancing generalizability and building trust requires large 
multicenter studies, XAI, and standardized reporting. 
Additionally, ethical considerations remain important when 
using ML in medicine [2]. Progress in other solid organ 
transplants highlights opportunities for LTx, with techniques 
still unexplored, offering room for future innovation. Crucially, 
ML should complement clinical decision-making, and not replace 
clinical judgement. Its success relies on collaboration among 
clinicians, data scientists, ethicists, and regulators. Overcoming 
current barriers will enable ML to meaningfully improve 
transplant outcomes.
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GLOSSARY

AI Artificial Intelligence

ANN Artificial Neural Network

AUROC Area Under the Receiver Operating Characteristic Curve

Bagging Bootstrap Aggregating

BAL Bronchoalveolar Lavage

BMI Body Mass Index

BOS Bronchiolitis Obliterans Syndrome

CLAD Chronic Lung Allograft Dysfunction

CNN Convolutional Neural Network

DL Deep Learning

DT Decision Tree

EVLP Ex Vivo Lung Perfusion

FEV1 Forced Expiratory Volume in one second

GA Genetic Algorithm

GAN Generative Adversarial Network

IRD Increased Risk for Disease Transmission

kNN k-Nearest Neighbors

LAPT Lung Transplantation Advanced Prediction Tool

LAS Lung Allocation Score

LASSO Least Absolute Shrinkage and Selection Operator

LTx Lung Transplantation

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

PCA Principal Component Analysis

PFT Pulmonary Function Test

PGD Primary Graft Dysfunction

qCT quantitative Computed Tomography

RF Random Forest

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

sCD31 soluble CD31

SHAP SHapley Additive Explanation

SVM Support Vector Machine

TCMR T-cell-mediated Rejection

TTLs Tacrolimus Trough Levels

UNOS the United Network for Organ Sharing

VO2 Volume of Oxygen Consumption

VOC Volatile Organic Compound

XAI explainable artificial intelligence
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