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Lung transplantation (LTx) offers life-saving therapy for patients with end-stage lung
disease but remains limited by donor shortages, complex postoperative management
and graft failure. Machine learning (ML) enables opportunities to address these
challenges by identifying patterns in complex, high-dimensional data, thereby
providing novel insights and improving outcomes. This review outlines ML studies
in LTx and explains the methodologies. ML has demonstrated promising results in
organ allocation and outcome prediction. Techniques such as support vector
machines, and deep learning are useful in risk stratification, while methods like
random forests improve interpretability and transfer learning supports model
development in data-scarce settings. ML has a growing role in multi-omics data
and imaging-based diagnostics. Despite promising results, barriers such as small
datasets, cross-center inconsistency, poor interpretability, and limited external
validation, hinder clinical adoption. Future progress requires multicenter
collaborations, transparent methodologies, and integration within clinical workflows.
ML should serve as complementary tool that enhances decision-making, rather than
replacing clinical judgement. With careful implementation, it holds the potential to
improve transplant outcomes.

Keywords: machine learning, artificial intelligence, transplantation, lung transplantation (LTx), review of literature

INTRODUCTION

Lung transplantation (LTx) is a life-saving treatment for end-stage lung disease. Despite surgical and
perioperative advances, challenges remain, including donor shortage, primary graft dysfunction
(PGD), and chronic lung allograft dysfunction (CLAD). As clinical data expand and pathophysiology
is better understood, these challenges also increase in complexity. Traditional decision-making and
predictive modelling is therefore limited.

Machine learning (ML), can identify complex, non-linear patterns, supporting outcome
prediction and personalized care [1-5]. In solid organ transplantation, ML is increasingly used
to predict survival and improve organ allocation [6]. Nonetheless, integration in LTx lags behind due
to small, heterogeneous datasets and complex pathways [7].

Transplant International | Published by Frontiers 1

February 2026 | Volume 38 | Article 15640


http://crossmark.crossref.org/dialog/?doi=10.3389/ti.2025.15640&domain=pdf&date_stamp=2026-02-02
http://creativecommons.org/licenses/by/4.0/
mailto:laurens.ceulemans@uzleuven.be
mailto:laurens.ceulemans@uzleuven.be
http://orcid.org/0009-0004-8674-6168
http://orcid.org/0000-0002-3976-2286
http://orcid.org/0000-0002-9459-836X
http://orcid.org/0000-0002-9715-4844
http://orcid.org/0000-0002-0646-2615
http://orcid.org/0000-0002-7069-1535
http://orcid.org/0000-0001-6435-6901
http://orcid.org/0000-0002-3468-9251
http://orcid.org/0000-0002-3806-4478
http://orcid.org/0000-0002-5336-5914
http://orcid.org/0000-0001-5548-9163
http://orcid.org/0000-0002-4261-7100
https://doi.org/10.3389/ti.2025.15640
https://doi.org/10.3389/ti.2025.15640

Vercauteren et al.

The aim of this narrative review is twofold. First, to provide
clinicians with a conceptual foundation that fosters understanding
of ML. Second, to explore ML applications in LTx, covering
outcome prediction, organ allocation, imaging, omics, and
other applications.

PRINCIPLES OF MACHINE LEARNING

ML enables mathematical models to learn from data, identify
patterns, and make predictions with minimal human intervention.
By leveraging algorithms, ML models extract insights and predict
outcomes [1]. ML is a central component of artificial intelligence
(AI) and closely connected to data science and computer science.
These domains overlap (Figure 1) in methodologies, applications,
and objectives, making clear distinction difficult [1, 3-5].

ML employs datasets specific for the task. In medical datasets,
clinical factors (e.g., age, smoking) serve as dimensions (features),
while individual observations (e.g., patients, images) represent
samples (data points). Based on whether labeled data (samples
with known outputs) are used, ML approaches can be classified as
supervised, unsupervised, and semi-supervised [1-5, 8].

Supervised ML uses labeled data to train predictive models
[1-5, 8]. To ensure generalizability, datasets are divided into
training, validation, and testing subsets. Models first learn
patterns from the training set. The validation set aids in
hyperparameter tuning (e.g., batch size, learning rate). It
detects underfitting and overfitting, meaning that the model is
too simple to capture the true patterns, or learns the noise in the
data, respectively (Figure 2) [1-3, 8]. Cross-validation is used to
ensure generalizability by partitioning the dataset into training
and validation subsets. An approach is k-fold cross-validation,
which divides data randomly into k (a number) folds. The model
is trained on k-1 folds and validated on the remaining one,
repeating this process k times so each subset serves as
validation once [1, 2, 5, 8]. Cross-validation ensures the model
outcomes are robust and not dependent on a single random split
of the dataset [1, 2, 5, 8]. Finally, the test set, an unseen portion of
data, is used to evaluate the final model performance [1, 2, 8].

Supervised ML is used for classification and regression. Both
utilize labeled datasets, but differ in output: classification predicts
categories, regression predicts continuous values [1, 2, 5, 8].

Conversely, unsupervised ML analyzes unlabeled data to identify
patterns [1-3, 5, 8]. Choosing between supervised and unsupervised
learning can be difficult, particularly when labeled data are scarce.
Semi-supervised ML bridges this gap by combining limited labeled
data alongside many unlabeled samples, useful in medical research
where data annotation is resource-intensive [1, 2, 8]. Commonly
used ML methods, shown in Figure 3, are evaluated and compared
using diverse metrics (Table 1).

STATE-OF-THE-ART OF MACHINE
LEARNING IN LUNG TRANSPLANTATION

LTx involves a heterogeneous, limited patient population with
extensive data. LTx recipients have worse outcome than other

Machine Learning in Transplantation
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FIGURE 1 | Interrelationship between computer science, artificial
inteligence, machine learning, and data science: a conceptual overview.

solid organ transplant recipients, highlighting persistent gaps. ML
could contribute to personalized treatment and improved
outcomes, as seen in other transplants [5, 9, 10].

The following section reviews key studies, as far as we know
(2004-2025), organized into: (1) outcome prediction, (2) organ
allocation, and (3) imaging, omics, and other applications. A
summary is presented in Table 2. Studies using simpler,
borderline-ML methods are excluded from the main text but
included in Table 2 and Figure 3.

Outcome Prediction

Survival and Quality of Life

In a series of studies, Oztekin, Delen, Amini and colleagues
demonstrated the value of ML for outcome prediction. Initially,
they showed that ML outperformed expert-selected variables and
traditional statistical models in predicting 9-year graft survival after
heart-lung transplantation, identifying more relevant variables and
relationships [12]. They applied logistic regression (Supplementary
Text, Figure 3A.2), decision trees (DTs), and artificial neural
networks (ANNs). DTs (Figure 3A.6) are interpretable models
that recursively split data to form rule-based trees. They are
sensitive to noise and require pruning (removing unnecessary
parts) to improve generalizability [1, 2, 4, 5, 8]. ANNs
(Figure 3A.8) are algorithms inspired by the brain (Figures
4A-D). The simplest form, a single-layer perceptron, mimics a
biological neuron. Adding hidden layers, referring to synaptic
connections creates a multilayer perceptron (MLP) [1, 2, 4, 5, 8].
Unlike DTs, ANNSs lack interpretability and rely on large datasets,
therefore, the United Network for Organ Sharing (UNOS) cohort of
16,604 patients was crucial for this approach [5, 8].

Later, their work was extended to survival estimation, again
comparing ML with expert-selected and literature-based
variables. ML outperformed both approaches by retaining
important predictors overlooked in traditional methods. They
applied DTs and ANNSs, and additionally introduced support
vector machines (SVMs) [13]. SVMs (Figure 3A.5) are
algorithms that maximize the margin between classes (distance
between the decision boundary and the nearest data points from
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each class). An innovation is the kernel trick, which enables
SVMs to classify nonlinearly separable data by mapping it into
higher-dimensional space (Figure 5) [1-5, 8]. Model
performance was compared using Cox regression
(Supplementary Text, Figure 3A.3). Subsequently, k-means
clustering, two-step cluster analysis, and conventional heuristic
approaches were used to determine the optimal number of
patient risk groups. Unsupervised k-means clustering
(Figure 3B.1) groups data into a predefined number of
clusters based on feature similarity by iteratively assigning
samples to the nearest centroid (center of a cluster) and
updating centroids as the mean of assigned samples. It offers
an unbiased way to explore risk groups [1-5, 8]. In this study,
three clusters were optimal [13].

In 2011, a DT-based hybrid model was designed to provide an
interpretable ML approach. However, its accuracy remained low.
Moreover, using variables predefined from previous studies biased
the model, potentially missing important interactions [14]. To
predict quality of life, Genetic Algorithm (GA)-based approaches
for feature selection were introduced [16], particularly useful for
complex, feature-rich domains with limited samples as in LTx.
GAs (Figure 3C.1) are optimization techniques inspired by
biological evolution, using selection, crossover, and mutation to
find optimal solutions, e.g., determining representative variables
[5,59]. The GA was combined with three classification algorithms:
SVM, ANN and k-Nearest Neighbors (kNN) (Figure 3A.7).
Unlike other algorithms, kNN predicts without training, by
averaging outcomes of the k most similar samples to unseen
input. Performance depends on data quality, choice of distance
metric, and k. In high-dimensional data, kNN’s accuracy
can degrade [1, 2, 5, 8], therefore, combining it with GA is
appropriate.

Subsequent research performed classification of post-LTx
survival (<1 year vs. >10 years), incorporating additional
methods, namely ensemble models such as random forests
(RF) and gradient boosting trees [21]. Ensemble learning
combines multiple models to improve predictive accuracy,
reduce overfitting, and enhance robustness [I, 2, 5, 8].
Bagging (bootstrap aggregating) (Figure 3A.10.1) improves
stability by training on different data subsets [1, 2, 5, 8]. RF
is a common bagging method that aggregates DTs [1, 5, 8].
Boosting (Figure 3A.10.2) builds models sequentially, each
correcting errors of the previous one [1, 5, 8]. Among all
models, RF achieved the best performance. To improve
model transparency, the authors employed an explainable Al
(XAI) method: SHapley Additive Explanations (SHAP), a
model-agnostic framework that quantifies each feature’s
contribution to a prediction by considering all possible
feature combinations [60]. SHAP identified Hepatitis B
surface antibody and forced expiratory volume in one
second (FEV1) as predictors of long-term survival. However,
methodological limitations warrant consideration. The use of
binary classification (<1 year vs. >10 years) excluded nearly half
of the cohort [21]. This neglects intermediate survival, arguably
the most challenging to predict, which makes the modest
performance noticeable.

Moro et al. created a DT for survival predictions. Using UNOS
data, 47 features were identified via stepwise logistic regression,
assuming linear relationships. Consequently, meaningful
nonlinear interactions may have been missed, and reducing
60 to 47 variables offered minimal dimensional or
computational benefit. The final DT used six key predictors,
including three postoperative variables, limiting the model’s
preoperative prognostic utility, despite its interpretability.
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TABLE 1 | Common metrics used in machine learning.

Proportion of correct predictions among total samples

Average of squared differences between predicted and true

Proportion of true positives among predicted positives
Proportion of true positives among actual positives
Proportion of true negatives among actual negatives
Area under the receiver operating characteristic curve,
combination recall and false positive rate (sometimes

Table showing true positives, false positives, true negatives

Probability that the model correctly ranks outcomes

Machine Learning in Transplantation

Description Common use case

General performance for balanced
binary/multiclass classification
Penalize large errors

Interpretability with penalties

When false positives are costly (e.g.,
spam filter)

When false negatives are costly (e.g.,
disease detection)

When false positives must be avoided
(e.g., excluding innocent suspects)
Binary classification, model comparison

Imbalanced classification
Detailed prediction breakdown

Decision tree splitting criterion
Ranking in survival analysis
Model fit evaluation

Cluster validation

Cluster validation

Number Metric ML type
1 Accuracy Classification
2 Mean squared error (MSE) Regression
values
3 Root mean squared error (RMSE) Regression Square root of MSE
4 Precision Classification
5 Recall/sensitivity Classification
6 Specificity Classification
7 Area under the receiver operating Classification
characteristic curve (AUROC)
interchanged with AUC)
8 F1-score Classification  Harmonic mean of precision and recall
9 Confusion matrix Classification
and false negatives
10 Gini index Classification  Measure of impurity used in splits
ih C-statistic (concordance) Classification
12 R? score Regression Explained variance ratio
13 Silhouette score Clustering Cohesion and separation of clusters
14 Intraclass inertia Clustering

Compactness of the clusters, average of the distances

between the centroids and the datapoints

Eight subgroups (decision nodes) showed distinct survival curves.
As expected, best outcomes occurred in younger recipients with
short hospital stays, limited ventilation support, and no
reintubation [25].

To compare survival between increased risk for disease
transmission (IRD) organ recipients versus non-IRD organ
recipients, Mark et al. applied RF and Cox regression. As
Cox regression performed best, it was selected for further
analysis, which somewhat diminished the novelty of ML
implementation. Nevertheless, the study offered a data-
driven perspective to expand the donor pool, demonstrating
a7.2% improvement in 5-year survival for IRD lung transplant
recipients [17].

Unlike the prior study, Tian et al. demonstrated that RF can
outperform Cox regression, for survival prediction under
standard conditions, achieving high predictive accuracy.
Generalizability across subgroups with different diagnoses and
treatments was reported. However, the single-center design and
limited sample size may question this [22].

The effectiveness of RF, combined DTs, was also shown by
Fessler et al., analyzing 284 variables across 12 perioperative
stages to predict one-year mortality. As presumed, the accuracy
went up by including information of later stages. Lung allocation
score (LAS) emerged as top predictor [18].

Primary Graft Dysfunction

A subsequent study by Fessler et al. used gradient boosting to
predict PGD3, a syndrome linked to adverse outcomes [61].
Extracorporeal membrane oxygenation use, along with recipient
factors, were revealed as top predictors [20]. Due to the short
length of these papers [18, 20], the information provided on the
ML implementation is limited. In their most recent paper [28],

predicting PGD3 at 72h, they offer more information about
logistic regression and XGBoost, an efficient gradient boosting
variant, that improves computational memory usage, well-suited
for large datasets [62]. Fessler’s studies introduce an innovative
approach by progressively incorporating data from successive
transplant phases, allowing the prognosis to be refined at
each stage.

Michelson et al. similarly predicted PGD3 using pretransplant
data, enabling potential application in patient selection and
pretransplant counseling. From 100 features, Least Absolute
Shrinkage and Selection Operator (LASSO) (Supplementary
Text) selected 11 predictors. Among four models, kNN
performed best and was released as open-access risk
calculator [26].

With data from 802 patients, Xia et al. evaluated nine
algorithms. RF classified PGD3 best. SHAP identified blood
loss as important, but prior feature selection, based on linear
relation assumption, may have introduced selection bias [27].

Other Outcome Parameters

Using a small, unbalanced dataset, Tian et al. developed
eight ML models combined with seven feature selection
methods to predict airway stenosis requiring clinical
intervention. Key predictors in RF included postoperative
6-minute walk test and indication for LTx. This model
could guide postoperative follow-up [24].

Braccioni et al. assessed how clinical parameters relate to
symptom severity during exercise testing after LTx. Boruta, a
feature selection method based on RF [63], revealed associations
for limited exercise capacity: dyspnea correlating with peak
ventilation and work rate, muscle effort with breathing
reserve, and muscle pain with VO, peaks. These findings
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TABLE 2 | Overview of Studies about machine learning in lung transplantation.

Autor(s)
(Year)

Study population

Outcome prediction

Troiani and 30 LTx recipients (over

Carlin [11]* 60 subject-years)

Oztekin et al. 16604 heart-LTx patients

(2009) [12] (UNOS)

Delen 106398 thoracic patients

et al. [13] (UNOS)

Oztekin 6512 LTx records

et al. [14] (UNOS)

Pande 509 LTx patients

et al. [15] (9471 FEV1 evaluations
over time)

Oztekin 3684 LTx records

et al. [16] (UNOS)

Mark etal. [17]  LTx candidates:
1010 IRD, 12013 non-
IRD and 19217 waitlist
(UNOS)

Fessler 410 double LTx

et al. [18] recipients

Input

2-week epochs of
daily/biweekly

FEV1 and symptom
data

283 features
(demographics,
health-related and
transplant-related)

565 features
(demographics,
health-related and
transplant-related)

25 features

Time-series FEV1,
demographic and
clinical features
147 features

Top 5 (out

of >100 features):
recipient and donor
characteristics, IRD
status, time on
waitlist (UNOS)

284 patient, donor,
and surgical
variables in

12 stages

Output

Prediction of acute
bronchopulmonary
disease events

9-year graft survival

Graft survival time, risk
groups

Predict LTx success
(graft survival and quality
of life)

Predict FEV1 over time
and key feature-time
interactions

Predict quality of life
post LTx

Compare 5-year survival
for IRD vs. non-IRD
organ offers

Predict one-year post-
transplant mortality

Model(s)

Heuristic rule-
based, classical
linear-logistic
regression,
Bayesian
models

DTs, ANNs,
logistic
regression, Cox
regression

SVM,
ANN,DTs, Cox
regression and
k-means, 2-
step, heuristic
clustering

Structural
equation
modeling
(meaning:
Statistical
method
showing how
different factors
are related to
each other,
including
hidden (latent)
ones) DT
Boosted DTs

GA-kNN, GA-
SVM, and
GA-ANN

Cox
Proportional
Hazards,
random forests
(500 DTs)

RF

Metrics

Bayesian model
AUROC = 0.882
Sensitivity = 0.886
Specificity = 0.955

MLP

Accuracy = 0.859
Sensitivity = 0.847
Specificity = 0.869

SVM
MSE = 0.023
R? = 0.879

k-means clustering
3 risk groups
intraclass intertia =
1,68 x 107

R? = 0.68

RMSE =
0.115-0.421

GA-SVM
Accuracy = 0.994
Precision =
0.991-0.997
Sensitivity =
0.992-0.998
Specificity =
0.996-0.998

F1 = 0.991-0.995
7.2% 5-year
survival with IRD
lung vs. non-IRD
69.9% of
simulations favored
IRD lung

RMSE = 5.3
AUROC =
0.65-0.75

Machine Learning in Transplantation

Train/Validation/
Test and
validation

method

2-fold cross-
validation

10-fold cross-
validation

10-fold cross-
validation

10-fold cross-
validation

In sample cross-
validation

5-fold cross-
validation

5-fold cross-
validation

Train/test (80/20),
40 repetitions

Transparency
and
explanations of
ML
(mathematical
background,
architecture, .. )

Detailed model
descriptions,
Bayesian priors
disclosed,
transparency
limited in heuristic
model

Hazard function,
metrics, k-fold
cross-validation,
no insight in ML
models (brief
explantation)
Hazard function,
metrics, k-fold
cross-validation,
no insight in ML
models (brief
explantation)

Mathematical
methodology:
Structural
equation modeling
and composite
scores, metrics,
k-fold cross-
validation

Models,
algorithms, cross-
validation, metrics
Normalization,
GA, k-fold cross-
validation, metrics

RF details

Limited

(Continued on following page)
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TABLE 2 | (Continued) Overview of Studies about machine learning in lung transplantation.

Autor(s)
(Year)

Braccioni
etal. [19]

Fessler
et al. [20]

Aminietal. [21]

Tian et al.
(2023) [22]

Melnyk et al.
[231*

Tian et al. [24]

Moro et al. [25]

Michelson
et al. [26]

Xia et al. [27]

Study population

24 bilateral LTx recipients

478 double LTx
recipients

9864 adult US LTx
recipients

504 adult LTx recipients

369 patients, 125 cases

381 LTx patients

27296 LTx recipients
(UNOS)

576 bilateral LTx
recipients (UNOS, Unet,
local)

802 LTx recipients

Input

24 recipients
variables,
incremental cardio-
pulmonary exercise
testing

6 recipient, donor,
intraoperative
features in 9 stages

171 features
(demogragics,
clincal, transplant)

16 out of 22 clinical
variables: recipient,
donor, surgical and
post-op factors

11 significant out of
all preoperative
recipient
characterstics,
procedural
variables,
perioperative blood
product
transfusions, and
donor
charactersitics

15 features:
recipient and
postoperative

60 recipient and
donor data

11 out of 100 donor,
recipient
pretransplant
features

9 out of 37 features:
Clinical

Output

Associations between
the severity of
symptoms (dyspnea,
muscle effort, muscle
pain) and exercise
testing parameters
Predict PGD3

Classify short-term

(<1 year) vs. long-term
(=10 years) survival
after LTx

Predict overall survival

Relation between blood
transfusion and
morbitity (6 endpoints)

Prediction of airway
stenosis requiring
clinical intervention

1-, 5-, 10-year survival
propabilities

Prediction of
PGD3 within 72 h
after LTx

Predict PGD3 within
72 h post-transplant

Model(s)

RF/Boruta

Gradient
boosting
algorithm,
SHAP

RF, DT,
gradient
boosted trees,
kNN, ANN,
SVM, logistic
regression,
SHAP

RF, Cox
regression

Elastic Net
regression

56 models:

7 features
selection
methods
combined with
8 ML models
DT; stepwise
logistic
regression for
variable
selection
LASSO + kNN,
logistic
regression,
XGBoost, SVM,
SHAP

9 models (DT,
kNN, MLP,RF,
SWM, ...),

SHAP, LASSO

Metrics

AUROC = 0.7-0.87

RF

Accuracy = 0.7792
Sensitivity = 0.7626
Specificity = 0.7958
AUROC = 0.79

RF integrated
AUROC = 0.879
(better than Cox:
Integrated
AUROC = 0.658)
Accuracy = 0.765
Sensitivity: 0.80
Specificity: 0.69

RF + determination
coefficient

AUROC = 0.760
Sensitivity = 0.782
Specificity = 0.689

Logisitic regression
Accuracy = 0.653
8 subgroups (DT)

KNN
AUROC = 0.65
F1=0.62

RF: Internal
validation

AUROC = 0.7975
Sensitivity = 0.7520
Specificity = 0.7313

Machine Learning in Transplantation

Train/Validation/
Test and
validation

method

5-fold cross-
validation
(10 resamples)

Train/test (80/20)

10-fold cross-
validation

Train/test split (70/
30), bootstrapping
(1000 resamples)

Cross-validation
(500 repeats)

Bootstrap
validation
(1000 resamples)

Train/test split (70/
30), 10-fold cross-
validation

Train/test split (75/
25), 5-fold cross-
validation (training
set 50 resamples)

Train/validate/test
split (56/24/20), 5-
fold cross-
validation

Transparency
and
explanations of
ML
(mathematical
background,
architecture, .. )

Limited but short
explanation RF/
Boruta

Limited

SHAP

Variable
importance, overal
limited

Limited

Limited

Logistic model, DT
given, training
explantation
limited

TRIPOD,
preprocessing but
limited info about
ML, model hosted
at pgdcalc.
wustl.edu

Limited, but
visualizations and
some information
about RF

(Continued on following page)
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TABLE 2 | (Continued) Overview of Studies about machine learning in lung transplantation.

Autor(s) Study population
(Year)

Fessler et 477 LTx patients

a. [28]

Organ allocation

Duefas- 404 LTx cases
Jurado

etal. [29]

15124 double LTx
recipients (UNOS)

Zafar et al. [30]

Brahmbhatt 19900 adult LTx patients

et al. [31] (UNOS)

Sageetal. [32] 725 EVLP donor lung
assessments

Pu et al. [33] 4610 subjects

Dalton 13204 LTx candidates

et al. [34] and 20763 recipients

(SRTR)

Imaging, omics and other applications
Bartholmai 119 subjects with
et al. [35] interstitial lung disease

Input

66 features in
9 stages

36 donor-recipient
variables (clinical,
surgical, functional)

19 out of

42 recipient, donor,
and transplant
variables

Pre-transplant
recipient data

Recipient, donor
and 24 EVLP
variables
Demographics and
computed
tomography scans

Demographics and
clinical features

High-resolution
computed
tomography,
pulmonary function
tests, clinical data

Output

Predict PGD3 at 72h

Predict 6-month graft
survival; optimize donor-
recipient matching

Predict 1-, 5-, 10-year
survival and half-life; and
classify into risk clusters

Prediction of 1- and 3-
year post-transplant
mortality

Predict transplant
suitability/

extubation <72h
Prediction of left/right/
total lung volume,
thoracic cavity volume,
and heart volume to
improve size matching

Prediction of waitlist
mortality at 1, 3,

6 months and post-
transplant survival at 1,
3, and 5 years

Quantitative
classification of
interstitial lung disease
patterns (emphysema,
ground glass,
honeycombing, normal
and reticular) with
correlation to physiology
and clinical outcomes

Model(s)

XGBoost,
logistic
regression,
SHAP

Linear
regression initial
covariates and
product units
neural networks
(LRIPU) model
Cox-LASSO,
backward Cox
and RF-Cox,
clustering via
expectation-
maximization
(LAPT)

LAS, Houston
Methodist
model, clinician
model,

LASSO, RF

XGBoost
(InsighTx
model), RF
CNN, 8 ML
models (Incl.
RF, kNN, DTs)

Cox regression
(LAS/lung
Composite
allocation
score), re-
estimated
models, RF,
linear
discriminant
analysis, logistic
regression,
boosted DT

Computer
aided lung
Informatics for
pathology
evaluation and
rating
(CALIPER),
ANN, Bayes,
SVM, kNN

Metrics

XGBoost:
AUROC = 0.84
Sensitivity = 0.81
Specificity = 0.68

Cox-LASSO

C statistic for 1-year
survival = 0.67

C statistic for 5-year
survival = 0.64

C statistic for 10-
year survival = 0.72
RF

AUROC = 0.62
Specificity = 0.76
Sensitivity = 0.44
(similar to all other
models)

AUROC: 0.75-0.85

MLP right and left
lung, thoracic cavity
R® = 0.501-0.628
XGBoost heart and
total lungs

R? = 0.430-0.514
Waitlist

AUROC =
0.85-0.93
Transplant survival
AUROC =
0.56-0.62

Analysis of similarity
within a cluster
R = 0.962

Machine Learning in Transplantation

Train/Validation/
Test and
validation

method

Train/test split (80/
20)

(500 resamples),
grid search
approach, 5-fold
cross-validation

Train/test1/test2
(70/13/17)

Train/test (70/30)

Train/test split
(85/15)

Train/test (80/20),
5-fold cross-
validation
Train/validate/test
(80/10/10), 10-
fold cross-
validation

10-fold cross-
validation

Transparency
and
explanations of
ML
(mathematical
background,
architecture, .. )

XGBoost model
hyperparameter
tuning

Model and
coefficients

Limited

Limited

Code shared

10-Fold cross-
validation,
visualisations,
hyperparameters

Model explanation
in the authors’
Supplementary
Material

Limited, feature
extraction

(Continued on following page)
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TABLE 2 | (Continued) Overview of Studies about machine learning in lung transplantation.

Autor(s)
(Year)

Barbosa et al.
(2017) [36]

Weigt
et al. [37]

Barbosa
et al. [38]

Halloran
et al. [39]

Cantu
et al. [40]

Halloran
et al. [41]

Halloran
et al. [42]

Dugger
et al. [43]

Berraetal. [44]

Study population

176 LTx patients

17 LTx recipients, 1 year
post-LTx BAL samples

71 LTx recipients

242 single-piece LTx
biopsies (transbronchial
biopsies)

113 LTx patients

243 mucosal biopsies
from 214 LTx patients

457 transbronchiale and
314 mucosale biopsies

49 LTx recipients (small
airway brushes and
transbronchial biopsies)

40 LTx patients (BAL)

Input

Quantitative
Computed
tomography scans,
PFT, semi-
quantitative
Computed
tomography scores
BAL cell pellet
transcriptome
(microarray);

40 genes with
differential
expression
(immune-related)
Quantitative
Computed
tomography
scans, PFT

Gene expression
(microarrays),
453 rejection-
associated
transcripts

Clinical, recipient,
donor and
transplant features,
preprocurement
donor lung biopsies
(gene expression of
innate immunity:
Toll-like receptor
and nod-like
receptor pathways)
Gene expression
(microarrays),

315 rejection-
associated
transcripts (RATS),
11 pathogenesis
based transcripts
Gene expression
(microarray),
rejection-
associated
transcripts
RNAseq and digital
RNA counts

Protein expession
(incl. Angiotensin II-
related)

Output

Diagnose BOS

Prediction of incipient
CLAD within 2 years
post-BAL

Predict eventual onset
of BOS

Identify disease states/
phenotypes: normal,

T cell mediated
rejection, antibody
mediated rejection,
injury

Prediction of PGD3 at
48-72h post-transplant

Classification into
molecular phenotypes:
normal, rejection, late
inflammation, injury

Prediction of graft
survival based on
molecular T cell
mediated rejection
phenotype

Diagnosis of CLAD and
prediction of graft
survival

CLAD development

Model(s)

Multivariate
logistic

regression,
SVM, PCA

Unsupervised
hierarchial
clustering,
SVM, PCA

SVM

Unsupervised
archetypal
analysis, PCA

Feed-forward
deep learning

Unsupervised
archetypal
analysis, PCA

Unsupervised
archetypal
analysis,
PCA, RF

LASSO logistic
regression, RF

Linear
discriminant
analysis, SVM,
Bayes,
quadratic
discriminant
analysis

Metrics

Quantitative
Computed
tomography SVM
PCA

AUROC = 0.817

SVM
Accuracy = 0.941

Accuracy = 85%
(3 features);
sensitivity = 73.3%;
specificity = 92.3%

Toll-like receptor
AUROC = 0.776
Sensitivity = 0.786
Specificity = 0.706

RF airway brushing

AUROC = 0.84
Transbronchial
biopsies

AUROC = 0.62
CLAD vs. no-CLAD
AUROC = 0.86
CLAD development
AUROC = 0.97

Machine Learning in Transplantation

Train/Validation/
Test and
validation

method

10-fold cross-
validation
(90%—-10%)

Leave-one-out
cross-validation

Train/test (80/
20 or 90/10) with
500 or

100 random
combinations

5-fold cross-
validation

Leave-one-out
cross-validation

Leave-one-out
cross-validation

Transparency
and
explanations of
ML
(mathematical
background,
architecture, .. )

Limited

Limited

Limited

Limited, sum of
scores

Architecture DL
model

Limited, metrics in
the authors’
Supplementary
Material

Limited, metrics in
the authors’
Supplementary
Material

Limited

Limited

(Continued on following page)
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TABLE 2 | (Continued) Overview of Studies about machine learning in lung transplantation.

Autor(s)
(Year)

Mclnnis
et al. [45]

Tran-Dinh
et al. [46]

Zhang
etal. [47]

Su et al. [48]

Watzenboeck
et al. [49]

Stefanuto
et al. [50]

Qin et al. [51]

Wijbenga et al.

[Cxiy

Study population

88 CLAD patients
post-LTx

40 LTx recipients

243 LTx patients
(mucosal biopsies)

59 LTx recipients,
181 sputum samples

19 LTx recipients (BAL)

35 LTx recipients, 58 BAL
and blind bronchial
aspirate samples

97 human LTx paired
biopsies (pre/post-LTx)

152 LTx recipients

Input

Computed
tomography scans

Plasma levels of
soluble CD31,
oxygenation ratio
and respiratory
sequential organ
failure assement
score at 24h/
48h/72h

Gene expression
profiles

(19420 genes)

16S rRNA
microbiota
sequencing and
clinical biomarkers
(procalcitonin,
T-lymphocyte
levels)

Microbiome (16S
rRNA),
metabolome,
lipidome, BAL cell
composition, clinical
data, lung function
tests

VOC profiles

(386 features,
reduced to

20 features)
Expression profiles
(microarrays, incl.
transcriptomics for
cuproptosis-related
genes)

Exhaled breath via
SpiroNose (7-
sensor eNose);
patient and clinical
characteristics

Output

CLAD phenotype
prediction and graft
survival prognosis
based on lung texture
(ML and radiologist
scores): Normal,
hyperlucent, reticular,
ground-glass,
honeycomb

Predict acute cellular
rejection within 1 year
after LTx

Prediction of 4 clinical
response subtypes
post-LTx: no rejection,
rejection, late
inflammation—-atrophy,
recent injury

Differentiate infection vs.
acute rejection vs.
event-free

Predict FEV1 changes at
30/60/90 days (lung
function trajectory)

Predict severe (PGD3)
vs. mild/no PGD
(PGD0-2)

Diagnosis of lung
ischemia-reperfusion
injury, identification of
cuproptosis-related
biomarkers

Diagnosis of CLAD and
discrimination of
phenotypes

Model(s)

Computer-
aided lung
Informatics for
pathology
evaluation and
rating, Cox
regression

Deep
convolutional
neural network
using time
series of
biomarkers and
multivariate
modeling
Feature
selection:
boruta and
others
Classifiers:
SVM, RF,
kNN, DT

RF, linear
discriminant
analysis

ridge regression
models

SVM

LASSO, SVM +
recursive
feature
elimination, RF,
logistic
regression
Partial least
squares
discriminant
analysis, logistic
regression

Metrics

Sensitivity: 0.90
Specificity: 0.71
Accuracy: 0.75

AUROC: 0.851
AUROC = 0.85
Accuracy =
0.87 precision =
0.93

Recall = 0.33-1
(depending on
class)

SVM

Accuracy = 0.992
(247 genes used)

Infection vs. event-
free

AUROC = 0.898
Rejection vs. event-
free

AUROC = 0.919
Infection vs.
rejection

AUROC = 0.895
30 days r=0.76
60 days r = 0.63
90 days r = 0.42

AUROC = 0.90
Accuracy = 0.83
Sensitivity: 0.63
Specificity: 0.94
15 biomarker, for
each

AUROC >0.8
Logisitic regression
AUROC = 0.96

AUROC = 0.94
Specificity = 0.78
Sensitivity = 1
Discrimination BOS
vs. Restrictief
allograft syndroom
AUROC = 0.95

Machine Learning in Transplantation

Train/Validation/
Test and
validation

method

Stratified k-fold
cross-validation
and external test
set with class
weighting

10-fold cross-
validation

10-fold
crossvalidation

Nested cross-
validation (train: 3-
fold cross-
validation, test: 4-
fold cross-
validation)

Train/test (50/50),
leave-one-out
cross-validation

Train/test (53/47),
validation in rat
model

Train/test (67:33);
10-fold cross-
validation

Transparency
and
explanations of
ML
(mathematical
background,
architecture, .. )

Limited

Network
architecture,
modeling
methods, time
series handling
and statistical
background

Metrics

Limited

Limited

Limited,
visualisation of ML
pipline

Limited

Limited

(Continued on following page)
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TABLE 2 | (Continued) Overview of Studies about machine learning in lung transplantation.

Autor(s)
(Year)

Rametal. [53]*

Chaoetal. [54]

Gouiaa et al.

(2024) [55]

Gao et al. [56]

Chen et al.
57T

Choshi
et al. [58]

Partitioned in “outcome prediction,

Study population

80 out of 100 donor lung
pairs (Computed
tomography-imaged ex
situ)

113 donor lungs
evaluated with ex vivo
lung perfusion

40 LTx patients

113 + 97 lung graft
biopsy samples

160 LTx patients

117 + 6 LTx patients
(87112 datapoints)

”a

Input

Ex vivo CT scans,
donors and
recipient features

Chest radiographs,
functional EVLP
data

Plasma levels of
soluble CD31,
oxygenation ratio
and respiratory
sequential organ
failure assement
score at 24h/
48h/72h

38 signature genes

Demographics, LTx
data and 69 lab
indicators

36 clinical factors,
time series data of
tacrolimus doses
and route of
administration

Output

Donor lung suitability
classification; prediction
of ICU stay, PGD3 and
2-year CLAD

Predict transplant
suitability and early post-
transplant ventilation
outcomes

Predict acute cellular
rejection within 1 year
after LTx

Prediction of
ischemia—-reperfusion
injury and PGD

Predict time to first
rejection

Predict tacrolimus
trough levels

Model(s)

Dictionary
learning
(supervised ML)
seen as a
simpler
technique

Extreme
gradient
boosting
(XGBoost)

Taelcore
(topological
autoencoder,
ANN classifier)
compared to
other models
(incl. RF, kNN)

Weighted gene
coexpression
network
analysis,
LASSO, RF and
nomogram
LASSO
regression,
multivariate Cox
model

Multivariate
long short-term
memory: an
improved RNN,
SHAP

Metrics

Accuracy = 0.727

AUROC = 0.743
F-score = 0.75
Precision = 0.78
Recall = 0.74

Combined model
AUROC = 0.807
Sensitivity = 0.76
Specificity =
0.89-0.94

MSE = 0.307
RMSE = 0.0.38

AUROC >0.70 for
all 4 genes

1 year

AUROC = 0.799
2 years

AUROC = 0.757
3 years

AUROC = 0.892
R® = 0.67
Tacrolimus trough
levels within £30%
of actual = 88.5%

Machine Learning in Transplantation

Train/Validation/
Test and
validation

method

Train/test split
(18/82)

75%-25%
training-test split,
repeated with

30 random seeds

Stratified k-fold
cross-validation;
training/test split
75/25%

LASSO: 10-fold
cross-validation

Train/test (70/30)
10-fold cross-
validation

Train/validate/test
(80/10/10)

Transparency
and
explanations of
ML
(mathematical
background,
architecture, .. )

In their
Supplementary
Material:
explanation and
formulas
dictionary
learning, sparse
coding,
classification,
training

Limited

Topological loss
function,
persistence
homology,
entropy, rips
filtration, metrics,
short explanation
other models,
open-source code
(GitHub)

Limited, small
explanations of
models

Limited

Metrics

‘organ allocation” and “Imaging, omics and other applications,” in chronological order. If an article was not discussed in the text, an asterisk is

placed next to it. If multiple models were tested, metrics were reported for best-performing ML methods. ANN, Atrtificial Neural Network; AUROC, Area Under the Receiver
Operating Characteristic Curve; BAL, Bronchoalveolar Lavage; BOS, Bronchiolitis Obliterans Syndrome; CLAD, Chronic Lung Allograft Dysfunction; DL, Deep Learning; DT,
Decision Tree; EVLP, Ex Vivo Lung Perfusion; FEV1, Forced Expiratory Volume in one second; GA, Genetic Algorithm; IRD, Increased Risk for Disease Transmission; kNN,
k-Nearest Neighbors; LAPT, Lung Transplantation Advanced Prediction Tool; LAS, Lung Allocation Score; LASSO, Least Absolute Shrinkage and Selection Operator; LTx, Lung
Transplantation; ML, Machine Learning; MLP, Multilayer Perceptron; MSE, Mean Squared Error; PCA, Principal Component Analysis; PFT, Pulmonary Function Test; PGD,
Primary Graft Dysfunction; RF, Random Forest; RMSE, Root Mean Squared Error; RNN, Recurrent Neural Network; SHAP, SHapley Additive Explanation; SVM, Support Vector
Machine; UNOS, the United Network for Organ Sharing; VOC, Volatile Organic Compound.

linked reduced aerobic capacity and high ventilatory cost to
symptom severity. DT visualizations offered interpretable

insights to guide exercise prescriptions [19]. Despite the small

dataset (n = 24), the authors justified using ML, noting the
method performs well in small, high-dimensional datasets
without assuming normality or independence. Nonetheless,

correlation,

unequal

time

intervals,

small cohorts increase overfitting risk and limit generalizability
of the findings.

To analyze repeated FEV1 measurements after LTx, Pande
et al. developed a longitudinal model, handling challenges as
within-subject
unbalanced designs. Although FEV1 typically declines over

and
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Connection of multiple neurons via synapses; Panel (D) Artificial neural network.

FIGURE 4 | Comparison between biological neurons and artificial neural networks. Panel (A) Biological neuron receiving input via dendrites and sending output via
axon; Panel (B) Artificial neuron, a perceptron, receiving input from features (F1-F3) and after mathematical manipulation sending output as Y; (binary output); Panel (C)

N

time, patterns vary with individual factors. The method was
clearly described and implemented in an R package [15].

Overall, the studies reviewed above show the potential of ML
in LTx, but the applications stay rather limited. Stronger tools,
e.g., deep learning (DL), could be implemented, as seen in section
Organ Allocation [33].

Organ Allocation

LTx faces suboptimal organ allocation, causing long wait times
and significant candidate mortality [64]. Varying donor selection
criteria across centers limits organ availability. Allocation studies
suffer from bias, as unaccepted organs are absent in training
datasets. Unlike other transplants with comprehensive donor-
recipient risk stratification, LTx allocation largely neglects the
combined influence of factors [30].

To address these challenges, Zafar et al. developed the LTx
Advanced Prediction Tool (LAPT). Based on 15,124 UNOS cases,
LAPT grouped patients into low-, medium-, and high-risk
subsets. LAPT outperformed LAS by predicting 1-, 5-, and 10-
year survival and graft half-life for donor-recipient matches. This
web-based tool enables data-driven allocation beyond recipient-
centric systems [30].

Duerias-Jurado et al. combined logistic regression with ANNs
for donor-recipient matching. They incorporated donor, recipient
and perioperative variables to predict 6-month graft survival,
claiming to outperform traditional methods, although metrics
were not reported. Key predictors included low pre-transplant
CO,, while prolonged donor ventilation, older donor and
recipient age were linked to poorer outcomes [29].

To assess the suitability of donor lungs, Sage et al. created
InsighTx, a RF model integrating ex vivo lung perfusion (EVLP)
and other variables, offering a quantitative approach to evaluate and

o n N
:: ":'\ N ernel | Vs
n N
F1 ©

Nonlinearly separable

Linearly separable

FIGURE 5 | Kernel Trick for Nonlinearly Separable Data in Feature Space

to Linearly Separable Data. By applying a kernel function, the data are
transformed into a higher dimension, where a separating hyperplane can be
found. This enables Support Vector Machines to classify complex

patterns that cannot be separated in the original feature space. F1,

F2 represents features. X1, X2, X3 represents axis of projections in a
higher dimension.

improve lung utilization [32]. However, its primary endpoint,
extubation time, serves only as a short-term proxy for success
and does not fully capture longer-term outcomes.

Pu et al. developed eight ML models using donor
demographics to predict lung, heart, and thoracic cavity
volumes, to improve donor-recipient size matching [33]. The
performance of these approaches was benchmarked against
convolutional — neural  network  (CNN)-based  image
segmentation models, which were used to generate the
volumetric ground truth. CNNs are a class of DL
(Figure 3A.9), referring to ANNs with multiple hidden layers,
designed to process structured grid-like data like images. They
use filters to detect local structures (e.g., edges) and combine
them to recognize shapes. Like other DL models, it requires large
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labeled datasets and significant processing power [1-3, 8]. The
best-performing model was a MLP for individual lungs and
thoracic cavity estimates. These non-imaging-based volume
predictions may enhance allocation [33].

In contrast to these optimistic findings, Brahmbhatt et al.
concluded that LAS, clinician-based models, LASSO, and RF are
not sufficiently accurate to predict post-LTx survival. LAS
overestimated mortality in high-risk patients and the AUROC
of the Houston Methodist model was not achieved, highlighting
challenges of reproducibility and possible overfitting in earlier
literature. Predictive performance was not improved by ML,
disease-specific models, or donor variables [31].

Similarly, Dalton et al. reported that LAS refinement and
advanced techniques did not improve performance. Seven models
were evaluated with waitlist and post-transplant data to predict
waitlist mortality or post-transplant survival. While waitlist
models showed strong discrimination, all post-transplant models
performed poorly [34]. A possible solution is integrating images or
biological markers. Studies employing these approaches are
examined in section Imaging, Omics and Other Applications.

Imaging, Omics and Other Applications

Barbosa et al. investigated quantitative CT (qCT) to diagnose
bronchiolitis obliterans syndrome (BOS), a form of CLAD.
Logistic regression and SVM were used to compare qCT metrics,
pulmonary function tests (PFT), and semi-quantitative imaging
scores as input. To reduce qCT dimensionality, principal
component analysis (PCA) (Figure 3B.2) was applied, projecting
the data onto components capturing the highest variance while
minimizing information loss [1, 2, 5, 8]. PCA of qCT together with
PFT outperformed all models. However, BOS diagnosis relied solely
on chart-reviewed PFT decline, creating circularity, lacking
pathological confirmation, and potentially biasing comparisons
between qCT- and PFT-based models [36]. In a subsequent
study, qCT features including lobar volumes, airway volumes, and
airway resistance differed significantly in BOS patients, even at
baseline. Using SVM, they constructed classifiers in one-, two-,
and three-dimensional feature spaces. Remarkably, with only
three qCT parameters, the model achieved 85% accuracy in
predicting BOS [38]. Bartholmai et al. also used qCTs, to develop
the CALIPER platform for interstitial lung diseases. They applied
different ML methods to categorize lung parenchyma into five
patterns, challenging even for expert readers to distinguish.
CALIPER provided 3D visualizations for tracking of disease
burden [35]. Later, McInnis et al. tested CALIPER to distinguish
CLAD phenotypes and predict graft survival. Both CALIPER and
radiologist scores independently predicted graft failure, with
CALIPER enabling reproducible phenotyping and early
prognostication without requiring expiratory CT [45]. An
XGBoost model based on X-rays and perfusion data from EVLP
was developed to predict transplant suitability and ventilation
duration post-LTx. Abnormalities were scored per lobe and
correlated with oxygenation, compliance and edema. SHAP
ranked consolidation and infiltrates as strongest associated with
function and transplantability [54]. These studies illustrate how
ML-driven imaging analysis can overcome interobserver
variability, provide objective and reproducible quantification,

Machine Learning in Transplantation

reduce human workload, and enable more accurate, scalable
assessment of graft injury.

Tran-Dinh et al. developed a model to predict acute cellular
rejection using soluble CD31 (sCD31) as biomarker. From only
forty recipients, sCD31 levels were combined with recipient
haematosis in a CNN model [46]. The authors claim their
model uses concepts similar to transfer learning (Figure 3C.2),
where a model trained on one task is adapted to another, valuable in
data-scarce settings [1, 2]. However, this is questionable, as their
network was trained from scratch rather than optimized from a
pretrained model. In another study, a topological autoencoder
(Taelcore) was created to improve these predictions by capturing
underlying data structures. Applied to the same dataset,
dimensionality reduction with Taelcore achieved more accurate
predictions than methods like PCA [55]. Likewise, features
extracted by Taelcore lack biological interpretability.

To predict tacrolimus trough levels (TTLs) in LTx patients,
Choshi et al. developed a long short-term memory-based Recurrent
Neural Network (RNN), a DL model handling sequential data. This
approach relied on clinical inputs identified by SHAP, including
previous TTLs and tacrolimus doses. The model captured temporal
patterns in dosing and drug response, enabling individualized
immunosuppressant management [58]. Yet, its accuracy may
diminish in real-world patient settings where missed doses and
irregular timing are common.

A gene expression-based DL classifier by Cantu et al. used
preprocurement donor lung biopsies to predict PGD3. Their Toll-
like receptor model outperformed clinical covariates [40],
demonstrating strong discriminative ability and indicating donor
innate immune activation as a key driver of PGD, though the analysis
was limited to two pathways. Gao et al. also used transcriptomic data
in different algorithms. Four neutrophil extracellular traps-related
hub genes were identified as drivers of ischemia-reperfusion injury.
Three of these were validated in clinical samples, related with PGD
development [56]. Furthermore, transcriptomic data were used to
explore cuproptosis, a form of cell death, as a potential mechanism in
ischemia-reperfusion injury. Three methods (LASSO, SVM, RF)
recognized critical biomarkers, with good performance.
Functional enrichment linked these genes to immune regulation
and cell death, while immune infiltration analysis revealed
associations with distinct immune cell subsets [51].

Using unsupervised ML on LTx transbronchial biopsies, Halloran
et al. defined four rejection archetypes. PCA linked T-cell mediated
rejection (TCMR) and injury to T cell and macrophage transcripts,
and antibody-mediated rejection-like to endothelial markers [39].
They also showed that this method worked for mucosal biopsies [41].
However, because mucosal biopsies were obtained only during
protocol or clinically indicated bronchoscopies, the sampling may
be biased toward unwell patients, limiting generalizability to
asymptomatic recipients. Molecular TCMR was associated with
future graft loss. Molecular scores outperformed clinical variables
in RF and remained robust even in low-surfactant or mucosal
samples [42]. Across these studies, Halloran et al. demonstrate
that molecular profiling of biopsies provides a more biologically
coherent assessment of rejection than histology, although the work
remains limited by sampling bias, nonspecific injury signals, and
small sample size. Using previously reported mucosal biopsy data
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[41], Zhang et al. classified recipients into four rejection-related
subgroups. Supervised classification achieved high accuracies (likely
overfitted: more features than samples) and lacked external
validation. Predictive genes were linked to T cell signaling and
innate immunity [47].

In another study, lymphocytic bronchitis gene signature in
transbronchial biopsies and small airway brushings were used to
predict graft failure and differentiate CLAD from controls. Gene
expression profiling with RF showed superior diagnostic
performance for brushings over biopsies, but because brushings
contain mixed epithelial and leukocyte populations, cell-
type-specific interpretation remains limited. The lymphocytic
bronchitis score was elevated in CLAD and associated with 2.4-
fold increased risk of graft loss [43].

Su et al. analyzed 181 sputum samples from 59 recipients using
16S rRNA sequencing, classifying samples into “stable”, “infection”,
and “rejection”. Differences in microbial composition appeared,
with six genera enriched during acute rejection, suggesting
immune-modulatory roles. Integrating these genera and clinical
data in a RF classified well, though repeated samples per patient
may cause biased results [48]. A study by Weigt described that gene
expression profiling of cells in bronchoalveolar lavage (BAL)
revealed an immune activation signature preceding clinical
CLAD diagnosis. Forty genes were differentially expressed in
incipient CLAD versus CLAD-free samples, enriched for
cytotoxic lymphocyte markers. SVM achieved 94.1% accuracy in
distinguishing only seventeen cases [37]. Berra et al. also used BAL
samples to predict CLAD and investigate the association with the
renin-angiotensin system. Although single proteins could not
discriminate, combinations in ML classifiers can, reflecting ML’s
strength in modelling beyond human assessment [44].

Another study predicted PGD wusing volatile organic
compounds (VOCs) from BAL fluid and bronchial aspirate
samples. VOC profiling with SVM modeling achieved 83%
accuracy in distinguishing PGD3 from lower grades. Twenty
VOCs, associated with lipid peroxidation and oxidative stress,
were top predictors. Additional analyses linked VOC patterns to
clinical variables, including donor BMI and Organ Care System,
indicating potential confounding. Recipient and intraoperative
factors did not significantly influence VOC profiles [50].

KEY INSIGHTS, FUTURE DIRECTIONS AND
CONCLUSION

A consistent strength of ML is its ability to integrate many weak or
noisy features into a meaningful signal, where human interpretation
or single-variable analyses fail. ML can capture complex, nonlinear
interactions, reveal hidden patterns, and offer early risk stratification
that traditional clinical or statistical methods miss. Yet, the
limitations across studies are strikingly uniform. Most studies are
small, single-center, only internally validated, and based on
imbalanced datasets. Sampling bias, missing confounders, and
heterogeneous data quality further reduce generalizability.
Compared with kidney, liver, and heart transplantation, where
ML-based tools are more mature, ML approaches in LTx research
remains largely underexplored [65-74]. Reporting is often
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insufficient: many papers provide limited mathematical detail
about model design, preprocessing, hyperparameter tuning, or
validation, making replication difficult and hindering fair
comparison across studies. More transparent, standardized
reporting following frameworks like MI-CLAIM (Minimum
Information about Clinical Artificial Intelligence Modeling) and
TRIPOD-AI (Transparent Reporting of a Multivariable prediction
model for individual Prognosis Or Diagnosis) should be strongly
encouraged.

Future Directions & Underused
Advanced Methods

Future directions should include more multimodal datasets, true
external validation, and the careful use of advanced ML methods.
Stacking, an ensemble model, could improve performance by
combining diverse base learners and a meta learner. Generative
Adversarial Networks (GANSs) could augment datasets. They consist
of a generator that creates synthetic data and a discriminator that
evaluates authenticity. Through adversarial training, based on
unlabeled data, both networks iteratively improve, allowing to
generate realistic data. Although the information content does not
increase, it enhances model flexibility and generalization. These are
only two examples of underused ML methods, that could strengthen
model performance. Post-hoc explanation tools such as Local
Interpretable Model-agnostic Explanations [5] and SHAP will
remain essential to ensure that predictions are clinically interpretable.

Conclusion

ML holds major potential in LTx, from improving outcome
prediction and organ allocation, to imaging and omics-based
insights. Yet, clinical adoption remains limited due to small,
single-center datasets and insufficient external validation.
Enhancing generalizability and building trust requires large
multicenter  studies, XAI, and standardized reporting.
Additionally, ethical considerations remain important when
using ML in medicine [2]. Progress in other solid organ
transplants highlights opportunities for LTx, with techniques
still unexplored, offering room for future innovation. Crucially,
ML should complement clinical decision-making, and not replace
clinical judgement. Its success relies on collaboration among
clinicians, data scientists, ethicists, and regulators. Overcoming
current barriers will enable ML to meaningfully improve
transplant outcomes.

AUTHOR CONTRIBUTIONS

BV conceived and drafted the review, prepared all figures, and
compiled the tables. All authors contributed to the article and
approved the submitted version.

FUNDING

The author(s) declared that financial support was received for
this work and/or its publication. LC is supported by a University

Transplant International | Published by Frontiers

February 2026 | Volume 38 | Article 15640



Vercauteren et al.

Chair from Medtronic and IGL and a senior clinical research
mandate from Research Foundation Flanders FWO (18E2B24N)
and philanthropic grants by Mr. Broere. RV is supported by a
research mandate from Research Foundation Flanders FWO
(1803521N). PK is supported by a research grant from
Research Foundation Flanders FWO (1120425N).

CONFLICT OF INTEREST

The author(s) declared that this work was conducted in the absence
of any commercial or financial relationships that could be construed
as a potential conflict of interest.

GENERATIVE Al STATEMENT

The author(s) declared that generative AI was used in
the creation of this manuscript. During the preparation of

REFERENCES

1. Burkov A. The Hundred Page Machine Learning Book.

2. Goodfellow I, Bengio Y, Courville A. Deep Learning. The MIT Press (2016).

3. Lim CP, Vaidya A, Chen YW, Jain V, Jain LC. Artificial Intelligence and
Machine Learning for Healthcare: Emerging Methodologies and Trends, 2.
Springer (2023).

4. Lim CP, Vaidya A, Chen YW, Jain T, Jain LC, editors. Artificial Intelligence
and Machine Learning for Healthcare: Vol. 1: Image and Data Analytics,
228. Springer International Publishing (2023). d0i:10.1007/978-3-031-
11154-9

5. Simon GJ, Aliferis C, editors. Artificial Intelligence and Machine Learning in
Health Care and Medical Sciences: Best Practices and Pitfalls. Springer
International Publishing (2024). doi:10.1007/978-3-031-39355-6

6. Gholamzadeh M, Abtahi H, Safdari R. Machine Learning-Based Techniques to
Improve Lung Transplantation Outcomes and Complications: A Systematic
Review. BMC Med Res Methodol (2022) 22(1):331. doi:10.1186/s12874-022-
01823-2

7. Rampolla R. Lung Transplantation: An Overview of Candidacy and Outcomes.
Ochsner J (2014) 14(4):641-8.

8. James G, Witten D, Hastie T, Tibshirani R, Taylor J. An Introduction to
Statistical Learning: With Applications in Python. Springer International
Publishing (2023). doi:10.1007/978-3-031-38747-0

9. Connor KL, O’Sullivan ED, Marson LP, Wigmore SJ, Harrison EM. The Future
Role of Machine Learning in Clinical Transplantation. Transplantation (2021)
105(4):723-35. doi:10.1097/TP.0000000000003424

10. He]J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The Practical Implementation of
Artificial Intelligence Technologies in Medicine. Nat Med (2019) 25(1):30-6.
doi:10.1038/s41591-018-0307-0

11. Troiani JS, Carlin BP. Comparison of Bayesian, Classical, and Heuristic
Approaches in Identifying Acute Disease Events in Lung Transplant
Recipients. Stat Med (2004) 23(5):803-24. doi:10.1002/sim.1651

12. Oztekin A, Delen D, Kong Z. Predicting the Graft Survival for Heart-Lung
Transplantation Patients: An Integrated Data Mining Methodology. Int ] Med
Inf (2009) 78(12):e84-e96. doi:10.1016/j.ijmedinf.2009.04.007

13. Delen D, Oztekin A, Kong Z. A Machine Learning-Based Approach to
Prognostic Analysis of Thoracic Transplantations. Artif Intell Med (2010)
49(1):33-42. doi:10.1016/j.artmed.2010.01.002

14. Oztekin A, Kong ZJ, Delen D. Development of a Structural Equation
Modeling-Based Decision Tree Methodology for the Analysis of Lung
Transplantations. Decis Support Syst (2011) 51(1):155-66. doi:10.1016/j.dss.
2010.12.004

Machine Learning in Transplantation

this work the author(s) used ChatGPT (OpenAl) and
Gemini (Google) in order to enhance the readability of the
manuscript. After using this tool/service, the authors reviewed
and edited the content as needed and take full responsibility for
the content of the publication.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with
the support of artificial intelligence and reasonable efforts
have been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues,
please contact us.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontierspartnerships.org/articles/10.3389/ti.2025.
15640/full#supplementary-material

15. Pande A, Li L, Rajeswaran ], Ehrlinger J, Kogalur UB, Blackstone EH, et al.
Boosted Multivariate Trees for Longitudinal Data. Mach Learn (2017) 106(2):
277-305. doi:10.1007/s10994-016-5597-1

16. Oztekin A, Al-Ebbini L, Sevkli Z, Delen D. A Decision Analytic Approach to
Predicting Quality of Life for Lung Transplant Recipients: A Hybrid Genetic
Algorithms-Based Methodology. Eur ] Oper Res (2018) 266(2):639-51. doi:10.
1016/j.¢jor.2017.09.034

17. Mark E, Goldsman D, Keskinocak P, Sokol J. Using Machine Learning to
Estimate Survival Curves for Patients Receiving an Increased Risk for Disease
Transmission Heart, Liver, or Lung Versus Waiting for a Standard Organ.
Transpl Infect Dis (2019) 21(6):e13181. doi:10.1111/tid.13181

18. Fessler J, Gouy-Pailler C, Fischler M, Guen ML. Machine Learning in Lung
Transplantation. ] Heart Lung Transpl (2020) 39(4):S385. doi:10.1016/j.healun.
2020.01.497

19. Braccioni F, Bottigliengo D, Ermolao A, Schiavon M, Loy M, Marchi MR, et al.
Dyspnea, Effort and Muscle Pain During Exercise in Lung Transplant
Recipients: An Analysis of Their Association with Cardiopulmonary
Function Parameters Using Machine Learning. Respir Res (2020) 21(1):267.
doi:10.1186/512931-020-01535-5

20. Fessler ], Vallee A, Gouy-Pailler C, Davignon M, Fischler M, Guen ML.
Machine-Learning for Primary Graft Dysfunction in Lung
Transplantation. ] Heart Lung Transpl (2021) 40(4):5380. doi:10.
1016/j.healun.2021.01.1069

21. Amini M, Bagheri A, Delen D. An Explanatory Analytics Model for Identifying
Factors Indicative of Long-Versus Short-Term Survival After Lung
Transplantation. Decis Anal ] (2022) 3:100058. doi:10.1016/j.dajour.2022.
100058

22. Tian D, Yan HJ, Huang H, Zuo YJ, Liu MZ, Zhao J, et al. Machine
Learning-Based Prognostic Model for Patients After Lung Transplantation.
JAMA Netw Open (2023) 6(5):€2312022. doi:10.1001/jamanetworkopen.2023.
12022

23. Melnyk V, Xu W, Ryan JP, Karim HT, Chan EG, Mahajan A, et al. Utilization
of Machine Learning to Model the Effect of Blood Product Transfusion on
Short-Term Lung Transplant Outcomes. Clin Transpl (2023) 37(6):14961.
doi:10.1111/ctr.14961

24. Tian D, Zuo YJ, Yan HJ, Huang H, Liu MZ, Yang H, et al. Machine
Learning Model Predicts Airway Stenosis Requiring Clinical Intervention
in Patients After Lung Transplantation: A Retrospective Case-Controlled
Study. BMC Med Inform Decis Mak (2024) 24(1):229. doi:10.1186/s12911-
024-02635-8

25. Moro A, Janjua HM, Rogers MP, Kundu MG, Pietrobon R, Read MD, et al.
Survival Tree Provides Individualized Estimates of Survival After Lung
Transplant. ] Surg Res (2024) 299:195-204. doi:10.1016/j.jss.2024.04.017

Transplant International | Published by Frontiers

February 2026 | Volume 38 | Article 15640


https://www.frontierspartnerships.org/articles/10.3389/ti.2025.15640/full#supplementary-material
https://www.frontierspartnerships.org/articles/10.3389/ti.2025.15640/full#supplementary-material
https://doi.org/10.1007/978-3-031-11154-9
https://doi.org/10.1007/978-3-031-11154-9
https://doi.org/10.1007/978-3-031-39355-6
https://doi.org/10.1186/s12874-022-01823-2
https://doi.org/10.1186/s12874-022-01823-2
https://doi.org/10.1007/978-3-031-38747-0
https://doi.org/10.1097/TP.0000000000003424
https://doi.org/10.1038/s41591-018-0307-0
https://doi.org/10.1002/sim.1651
https://doi.org/10.1016/j.ijmedinf.2009.04.007
https://doi.org/10.1016/j.artmed.2010.01.002
https://doi.org/10.1016/j.dss.2010.12.004
https://doi.org/10.1016/j.dss.2010.12.004
https://doi.org/10.1007/s10994-016-5597-1
https://doi.org/10.1016/j.ejor.2017.09.034
https://doi.org/10.1016/j.ejor.2017.09.034
https://doi.org/10.1111/tid.13181
https://doi.org/10.1016/j.healun.2020.01.497
https://doi.org/10.1016/j.healun.2020.01.497
https://doi.org/10.1186/s12931-020-01535-5
https://doi.org/10.1016/j.healun.2021.01.1069
https://doi.org/10.1016/j.healun.2021.01.1069
https://doi.org/10.1016/j.dajour.2022.100058
https://doi.org/10.1016/j.dajour.2022.100058
https://doi.org/10.1001/jamanetworkopen.2023.12022
https://doi.org/10.1001/jamanetworkopen.2023.12022
https://doi.org/10.1111/ctr.14961
https://doi.org/10.1186/s12911-024-02635-8
https://doi.org/10.1186/s12911-024-02635-8
https://doi.org/10.1016/j.jss.2024.04.017

Vercauteren et al.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Michelson AP, Oh I, Gupta A, Puri V, Kreisel D, Gelman AE, et al. Developing
Machine Learning Models to Predict Primary Graft Dysfunction After Lung
Transplantation. Am ] Transpl (2024) 24(3):458-67. doi:10.1016/j.ajt.2023.
07.008

Xia W, Liu W, He Z, Song C, Liu J, Chen R, et al. Machine Learning for
Predicting Primary Graft Dysfunction After Lung Transplantation: An
Interpretable Model Study. Transplantation (2025) 109:1458-70. doi:10.
1097/TP.0000000000005326

Fessler J, Gouy-Pailler C, Ma W, Devaquet J, Messika J, Glorion M, et al.
Machine Learning for Predicting Pulmonary Graft Dysfunction After Double-
Lung Transplantation: A Single-Center Study Using Donor, Recipient, and
Intraoperative Variables. Transpl Int (2025) 38:14965. doi:10.3389/t1.2025.
14965

Duenas-Jurado JM, Gutiérrez PA, Casado-Adam A, Santos-Luna F,
Salvatierra-Veldzquez A, Cércel S, et al. New Models for Donor-Recipient
Matching in Lung Transplantations. Plos One (2021) 16(6):e0252148. doi:10.
1371/journal.pone.0252148

Zafar F, Hossain MM, Zhang Y, Dani A, Schecter M, Hayes D, Jr, et al. Lung
Transplantation Advanced Prediction Tool: Determining Recipient’s Outcome
for a Certain Donor. Transplantation (2022) 106(10):2019-30. doi:10.1097/TP.
0000000000004131

Brahmbhatt JM, Hee Wai T, Goss CH, Lease ED, Merlo CA, Kapnadak SG,
et al. The Lung Allocation Score and Other Available Models Lack Predictive
Accuracy for Post-Lung Transplant Survival. ] Heart Lung Transpl (2022)
41(8):1063-74. doi:10.1016/j.healun.2022.05.008

Sage AT, Donahoe LL, Shamandy AA, Mousavi SH, Chao BT, Zhou X, et al. A
machine-Learning Approach to Human Ex Vivo Lung Perfusion Predicts
Transplantation Outcomes and Promotes Organ Utilization. Nat Commun
(2023) 14(1):4810. doi:10.1038/s41467-023-40468-7

Pu L, Leader JK, Ali A, Geng Z, Wilson D. Predicting left/right Lung Volumes,
Thoracic Cavity Volume, and Heart Volume from Subject Demographics to
Improve Lung Transplant. ] Med Imaging (2023) 10(05):051806. doi:10.1117/1.
JMI.10.5.051806

Dalton JE, Lehr CJ, Gunsalus PR, Mourany L, Valapour M. Refining the Lung
Allocation Score Models Fails to Improve Discrimination Performance.
CHEST (2023) 163(1):152-63. doi:10.1016/j.chest.2022.08.2217

Bartholmai BJ, Raghunath S, Karwoski RA, Moua T, Rajagopalan S,
Maldonado F, et al. Quantitative Computed Tomography Imaging of
Interstitial Lung Diseases. ] Thorac Imaging (2013) 28(5):298-307. doi:10.
1097/RT1.0b013e3182a21969

Barbosa EM, Simpson S, Lee JC, Tustison N, Gee J, Shou H. Multivariate
Modeling Using Quantitative CT Metrics May Improve Accuracy of Diagnosis
of Bronchiolitis Obliterans Syndrome After Lung Transplantation. Comput
Biol Med (2017) 89:275-81. doi:10.1016/j.compbiomed.2017.08.016

Weigt SS, Wang X, Palchevskiy V, Gregson AL, Patel N, DerHovanessian A,
et al. Gene Expression Profiling of Bronchoalveolar Lavage Cells Preceding a
Clinical Diagnosis of Chronic Lung Allograft Dysfunction. Plos One (2017)
12(1):e0169894. doi:10.1371/journal.pone.0169894

Barbosa EJM, Lanclus M, Vos W, Van Holsbeke C, De Backer W, De Backer J,
et al. Machine Learning Algorithms Utilizing Quantitative CT Features May
Predict Eventual Onset of Bronchiolitis Obliterans Syndrome After Lung
Transplantation. Acad Radiol (2018) 25(9):1201-12. doi:10.1016/j.acra.2018.
01.013

Halloran KM, Parkes MD, Chang J, Timofte IL, Snell GI, Westall GP, et al.
Molecular Assessment of Rejection and Injury in Lung Transplant Biopsies.
] Heart Lung Transpl (2019) 38(5):504-13. doi:10.1016/j.healun.2019.01.1317
Cantu E, Yan M, Suzuki Y, Buckley T, Galati V, Majeti N, et al. Preprocurement
in Situ Donor Lung Tissue Gene Expression Classifies Primary Graft
Dysfunction Risk. Am ] Respir Crit Care Med (2020) 202(7):1046-8. doi:10.
1164/rccm.201912-2436LE

Halloran K, Parkes MD, Timofte IL, Snell GI, Westall GP, Hachem R, et al.
Molecular Phenotyping of Rejection-Related Changes in Mucosal Biopsies
from Lung Transplants. Am ] Transpl (2020) 20(4):954-66. doi:10.1111/ajt.
15685

Halloran K, Parkes MD, Timofte I, Snell G, Westall G, Havlin ], et al. Molecular
T-Cell-Mediated Rejection in Transbronchial and Mucosal Lung Transplant
Biopsies Is Associated with Future Risk of Graft Loss. ] Heart Lung Transpl
(2020) 39(12):1327-37. doi:10.1016/j.healun.2020.08.013

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Machine Learning in Transplantation

Dugger DT, Fung M, Hays SR, Singer JP, Kleinhenz ME, Leard LE, et al.
Chronic Lung Allograft Dysfunction Small Airways Reveal a Lymphocytic
Inflammation Gene Signature. Am J Transpl (2021) 21(1):362-71. doi:10.1111/
ajt.16293

Berra G, Farkona S, Mohammed-Ali Z, Kotlyar M, Levy L, Clotet-Freixas S,
et al. Association Between the Renin-Angiotensin System and Chronic Lung
Allograft Dysfunction. Eur Respir ] (2021) 58(4):2002975. doi:10.1183/
13993003.02975-2020

MclInnis MC, Ma J, Karur GR, Houbois C, Levy L, Havlin J, et al. Chronic Lung
Allograft Dysfunction Phenotype and Prognosis by Machine Learning CT
Analysis. Eur Respir J (2022) 60(1):2101652. doi:10.1183/13993003.01652-2021
Tran-Dinh A, Laurent Q, Even G, Tanaka S, Lortat-Jacob B, Castier Y, et al.
Personalized Risk Predictor for Acute Cellular Rejection in Lung Transplant
Using Soluble CD31. Sci Rep (2022) 12(1):17628. doi:10.1038/s41598-022-
21070-1

Zhang YH, Li ZD, Zeng T, Chen L, Huang T, Cai YD. Screening Gene
Signatures for Clinical Response Subtypes of Lung Transplantation. Mol Genet
Genomics (2022) 297(5):1301-13. doi:10.1007/s00438-022-01918-x

Su J, xi LC, yue LH, et al. The Airway Microbiota Signatures of Infection and
Rejection in Lung Transplant Recipients. Microbiol Spectr (2022) 10 (2):
€00344-21. doi:10.1128/spectrum.00344-21

Watzenboeck ML, Gorki AD, Quattrone F, Gawish R, Schwarz S, Lambers C, et al.
Multi-Omics Profiling Predicts Allograft Function After Lung Transplantation.
Eur Respir ] (2022) 59(2):2003292. doi:10.1183/13993003.03292-2020

Stefanuto PH, Romano R, Rees CA, Nasir M, Thakuria L, Simon A, et al.
Volatile Organic Compound Profiling to Explore Primary Graft Dysfunction
After Lung Transplantation. Sci Rep (2022) 12(1):2053. doi:10.1038/s41598-
022-05994-2

Qin J, Xiao X, Li S, Wen N, Qin K, Li H, et al. Identification of Cuproptosis-
Related Biomarkers and Analysis of Immune Infiltration in Allograft Lung
Ischemia-Reperfusion Injury. Front Mol Biosci (2023) 10:1269478. doi:10.3389/
fmolb.2023.1269478

Wijbenga N, Hoek RAS, Mathot BJ, Seghers L, Moor CC, Aerts JGJV, et al.
Diagnostic Performance of Electronic Nose Technology in Chronic Lung
Allograft Dysfunction. J Heart Lung Transpl (2023) 42(2):236-45. doi:10.
1016/j.healun.2022.09.009

Ram S, Verleden SE, Kumar M, Bell AJ, Pal R, Ordies S, et al. Computed
Tomography-Based Machine Learning for Donor Lung Screening Before
Transplantation. J Heart Lung Transpl (2024) 43(3):394-402. doi:10.1016/j.
healun.2023.09.018

Chao BT, McInnis MC, Sage AT, Yeung JC, Cypel M, Liu M, et al. A
Radiographic Score for Human Donor Lungs on Ex Vivo Lung Perfusion
Predicts Transplant Outcomes. ] Heart Lung Transpl (2024) 43(5):797-805.
doi:10.1016/j.healun.2024.01.004

Gouiaa F, Vomo-Donfack KL, Tran-Dinh A, Morilla I. Novel Dimensionality
Reduction Method, Taelcore, Enhances Lung Transplantation Risk Prediction.
Comput Biol Med (2024) 169:107969. doi:10.1016/j.compbiomed.2024.107969
Gao ], Zhang Z, Yu ], Zhang N, Fu Y, Jiang X, et al. Identification of Neutrophil
Extracellular Trap-Related Gene Expression Signatures
Reperfusion Injury During Lung Transplantation: A Transcriptome
Analysis and Clinical Validation. J Inflamm Res (2024) 17:981-1001. doi:10.
2147/]JIR.S444774

Chen Y, Li E, Yang Q, Chang Z, Yu B, Lu J, et al. Predicting Time to First
Rejection Episode in Lung Transplant Patients Using a Comprehensive
Multi-Indicator Model. J Inflamm Res (2025) 18:477-91. d0i:10.2147/JIR.
5495515

Choshi H, Miyoshi K, Tanioka M, Arai H, Tanaka S, Shien K, et al. Long Short-
Term Memory Algorithm for Personalized Tacrolimus Dosing: A Simple and
Effective Time Series Forecasting Approach Post-Lung Transplantation.
] Heart Lung Transpl (2025) 44(3):351-61. doi:10.1016/j.healun.2024.10.026

Ahmad F, Mat-Isa NA, Hussain Z, Boudville R, Osman MK. Genetic
Algorithm-Artificial Neural Network (GA-ANN) Hybrid Intelligence for
Cancer Diagnosis. In: 2010 2nd International Conference on Computational
Intelligence, Communication Systems and Networks (2010). p. 78-83. doi:10.
1109/CICSyN.2010.46

Strumbelj E, Kononenko I. Explaining Prediction Models and Individual
Predictions with Feature Contributions. Knowl Inf Syst (2014) 41(3):647-65.
doi:10.1007/s10115-013-0679-x

in Ischemia

Transplant International | Published by Frontiers

February 2026 | Volume 38 | Article 15640


https://doi.org/10.1016/j.ajt.2023.07.008
https://doi.org/10.1016/j.ajt.2023.07.008
https://doi.org/10.1097/TP.0000000000005326
https://doi.org/10.1097/TP.0000000000005326
https://doi.org/10.3389/ti.2025.14965
https://doi.org/10.3389/ti.2025.14965
https://doi.org/10.1371/journal.pone.0252148
https://doi.org/10.1371/journal.pone.0252148
https://doi.org/10.1097/TP.0000000000004131
https://doi.org/10.1097/TP.0000000000004131
https://doi.org/10.1016/j.healun.2022.05.008
https://doi.org/10.1038/s41467-023-40468-7
https://doi.org/10.1117/1.JMI.10.5.051806
https://doi.org/10.1117/1.JMI.10.5.051806
https://doi.org/10.1016/j.chest.2022.08.2217
https://doi.org/10.1097/RTI.0b013e3182a21969
https://doi.org/10.1097/RTI.0b013e3182a21969
https://doi.org/10.1016/j.compbiomed.2017.08.016
https://doi.org/10.1371/journal.pone.0169894
https://doi.org/10.1016/j.acra.2018.01.013
https://doi.org/10.1016/j.acra.2018.01.013
https://doi.org/10.1016/j.healun.2019.01.1317
https://doi.org/10.1164/rccm.201912-2436LE
https://doi.org/10.1164/rccm.201912-2436LE
https://doi.org/10.1111/ajt.15685
https://doi.org/10.1111/ajt.15685
https://doi.org/10.1016/j.healun.2020.08.013
https://doi.org/10.1111/ajt.16293
https://doi.org/10.1111/ajt.16293
https://doi.org/10.1183/13993003.02975-2020
https://doi.org/10.1183/13993003.02975-2020
https://doi.org/10.1183/13993003.01652-2021
https://doi.org/10.1038/s41598-022-21070-1
https://doi.org/10.1038/s41598-022-21070-1
https://doi.org/10.1007/s00438-022-01918-x
https://doi.org/10.1128/spectrum.00344-21
https://doi.org/10.1183/13993003.03292-2020
https://doi.org/10.1038/s41598-022-05994-2
https://doi.org/10.1038/s41598-022-05994-2
https://doi.org/10.3389/fmolb.2023.1269478
https://doi.org/10.3389/fmolb.2023.1269478
https://doi.org/10.1016/j.healun.2022.09.009
https://doi.org/10.1016/j.healun.2022.09.009
https://doi.org/10.1016/j.healun.2023.09.018
https://doi.org/10.1016/j.healun.2023.09.018
https://doi.org/10.1016/j.healun.2024.01.004
https://doi.org/10.1016/j.compbiomed.2024.107969
https://doi.org/10.2147/JIR.S444774
https://doi.org/10.2147/JIR.S444774
https://doi.org/10.2147/JIR.S495515
https://doi.org/10.2147/JIR.S495515
https://doi.org/10.1016/j.healun.2024.10.026
https://doi.org/10.1109/CICSyN.2010.46
https://doi.org/10.1109/CICSyN.2010.46
https://doi.org/10.1007/s10115-013-0679-x

Vercauteren et al.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Van Slambrouck ], Van Raemdonck D, Vos R, Vanluyten C, Vanstapel A,
Prisciandaro E, et al. A Focused Review on Primary Graft Dysfunction After
Clinical Lung Transplantation: A Multilevel Syndrome. Cells (2022) 11(4):745.
doi:10.3390/cells 11040745

Hakkal S, Lahcen AA. XGBoost to Enhance Learner Performance
Prediction. Comput Educ Artif Intell (2024) 7:100254. doi:10.1016/j.
caeai.2024.100254

Kursa MB, Jankowski A, Rudnicki WR. Boruta - A System for Feature Selection.
Fundam Informaticae (2010) 101(4):271-85. doi:10.3233/FI-2010-288

Pierson RN, Barr ML, McCullough KP, Egan T, Garrity E, Jessup M, et al.
Thoracic Organ Transplantation. Am J Transpl (2004) 4:93-105. doi:10.1111/j.
1600-6135.2004.00401.x

Yoon J, Zame WR, Banerjee A, Cadeiras M, Alaa AM, Schaar M. Van Der.
Personalized Survival Predictions via Trees of Predictors: An Application to
Cardiac Transplantation. PLOS ONE (2018) 13(3):e0194985. doi:10.1371/
journal.pone.0194985

Kampaktsis PN, Moustakidis S, Tzani A, Doulamis IP, Drosou A, Tzoumas A,
et al. State-Of-The-Art Machine Learning Improves Predictive Accuracy of 1-
Year Survival After Heart Transplantation. ESC Heart Fail (2021) 8(4):3433-6.
doi:10.1002/ehf2.13425

Ayers B, Sandholm T, Gosev I, Prasad S, Kilic A. Using Machine Learning to
Improve Survival Prediction After Heart Transplantation. J Card Surg (2021)
36(11):4113-20. doi:10.1111/jocs.15917

Hsich EM, Thuita L, McNamara DM, Rogers JG, Valapour M, Goldberg LR,
et al. Variables of Importance in the Scientific Registry of Transplant Recipients
Database Predictive of Heart Transplant Waitlist Mortality. Am ] Transpl
(2019) 19(7):2067-76. doi:10.1111/ajt.15265

Seraphin TP, Luedde M, Roderburg C, van Treeck M, Scheider P, Buelow RD,
et al. Prediction of Heart Transplant Rejection from Routine Pathology Slides

70.

71.

72.

73.

74.

Machine Learning in Transplantation

with Self-Supervised Deep Learning. Eur Heart ] - Digit Health (2023) 4(3):
265-74. doi:10.1093/ehjdh/ztad016

Esteban C, Staeck O, Yang Y, Tresp V. Predicting Clinical Events by
Combining Static and Dynamic Information Using Recurrent Neural
Networks. Arxiv Preprint Posted Online (2016) 93-101. doi:10.48550/arXiv.
1602.02685

Marsh JN, Matlock MK, Kudose S, Liu TC, Stappenbeck TS, Gaut JP, et al.
Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen
Sections. IEEE Trans Med Imaging (2018) 37(12):2718-28. doi:10.1109/
TMI.2018.2851150

Yoo D, Divard G, Raynaud M, Cohen A, Mone TD, Rosenthal JT, et al. A
Machine Learning-Driven Virtual Biopsy System for Kidney Transplant
Patients. Nat Commun (2024) 15(1):554. doi:10.1038/s41467-023-44595-2
Bertsimas D, Kung J, Trichakis N, Wang Y, Hirose R, Vagefi PA. Development
and Validation of an Optimized Prediction of Mortality for Candidates
Awaiting Liver Transplantation. Am J Transpl Off ] Am Soc Transpl Am
Soc Transpl Surg (2019) 19(4):1109-18. doi:10.1111/ajt.15172

Shao W, Ding H, Wang Y, Shi Z, Zhang H, Meng F, et al. Key Genes and
Immune Pathways in T-Cell Mediated Rejection Post-Liver Transplantation
Identified via Integrated RNA-Seq and Machine Learning. Sci Rep (2024) 14(1):
24315. doi:10.1038/s41598-024-74874-8

Copyright © 2026 Vercauteren, Ozsoy, Gielen, Liao, Muylle, Van Slambrouck,
Vanaudenaerde, Vos, Kerckhof, Bos, Aerts and Ceulemans. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Transplant International | Published by Frontiers

17

February 2026 | Volume 38 | Article 15640


https://doi.org/10.3390/cells11040745
https://doi.org/10.1016/j.caeai.2024.100254
https://doi.org/10.1016/j.caeai.2024.100254
https://doi.org/10.3233/FI-2010-288
https://doi.org/10.1111/j.1600-6135.2004.00401.x
https://doi.org/10.1111/j.1600-6135.2004.00401.x
https://doi.org/10.1371/journal.pone.0194985
https://doi.org/10.1371/journal.pone.0194985
https://doi.org/10.1002/ehf2.13425
https://doi.org/10.1111/jocs.15917
https://doi.org/10.1111/ajt.15265
https://doi.org/10.1093/ehjdh/ztad016
https://doi.org/10.48550/arXiv.1602.02685
https://doi.org/10.48550/arXiv.1602.02685
https://doi.org/10.1109/TMI.2018.2851150
https://doi.org/10.1109/TMI.2018.2851150
https://doi.org/10.1038/s41467-023-44595-z
https://doi.org/10.1111/ajt.15172
https://doi.org/10.1038/s41598-024-74874-8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Vercauteren et al.

GLOSSARY

Al Artificial Intelligence

ANN Artificial Neural Network

AUROC Area Under the Receiver Operating Characteristic Curve
Bagging Bootstrap Aggregating

BAL Bronchoalveolar Lavage

BMI Body Mass Index

BOS Bronchiolitis Obliterans Syndrome

CLAD Chronic Lung Allograft Dysfunction

CNN Convolutional Neural Network

DL Deep Learning

DT Decision Tree

EVLP Ex Vivo Lung Perfusion

FEV1 Forced Expiratory Volume in one second

GA Genetic Algorithm

GAN Generative Adversarial Network

IRD Increased Risk for Disease Transmission

KNN k-Nearest Neighbors

LAPT Lung Transplantation Advanced Prediction Tool
LAS Lung Allocation Score

LASSO Least Absolute Shrinkage and Selection Operator

Machine Learning in Transplantation

LTx Lung Transplantation

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

PCA Principal Component Analysis
PFT Pulmonary Function Test

PGD Primary Graft Dysfunction

qCT quantitative Computed Tomography
RF Random Forest

RMSE Root Mean Squared Error

RNN Recurrent Neural Network
sCD31 soluble CD31

SHAP SHapley Additive Explanation
SVM Support Vector Machine

TCMR T-cell-mediated Rejection

TTLSs Tacrolimus Trough Levels

UNOS the United Network for Organ Sharing
VO, Volume of Oxygen Consumption
VOC Volatile Organic Compound

XALI explainable artificial intelligence
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