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The true comparative effectiveness of simultaneous pancreas–kidney transplantation 
(SPKT) versus kidney transplantation alone (KTA) in patients with diabetes and end- 
stage renal disease remains incompletely defined. Using the TriNetX Global Collaborative 
Network (2010–2024), we identified 3,679 SPKT and 27,062 KTA recipients aged 
18–59 years. In unmatched comparisons, SPKT recipients showed lower mortality, 
fewer cardiovascular events, and improved kidney graft survival relative to KTA 
recipients, but also higher early rejection, infection, and readmission rates. After 1: 
1 propensity score matching, the cohorts were well balanced across all measured 
covariates, and long-term estimates for survival (HR 1.00, 95% CI 0.90–1.10), kidney 
graft failure (HR 0.99, 95% CI 0.94–1.04), and cardiovascular events (HR 0.99, 95% CI 
0.94–1.05) no longer differed over 10 years. In contrast, SPKT recipients maintained 
significantly lower HbA1c levels throughout follow-up (mean 6.2% vs. 6.6% at 5 years; p < 
0.001), reflecting sustained physiologic glycaemic control and a high probability of insulin 
independence. Sensitivity analyses restricted to type 1 diabetes and non-obese recipients 
yielded consistent results. After accounting for measured differences between recipients, 
we did not detect a long-term survival advantage of SPKT over KTA, whereas durable 
metabolic benefits persisted. Because key donor and immunologic characteristics were 
not available, a modest intrinsic survival benefit cannot be excluded. These findings 
highlight the major role of patient selection and support individualised use of SPKT for 
metabolic indications and quality-of-life improvement rather than survival gain alone.
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GRAPHICAL ABSTRACT | 

INTRODUCTION

Simultaneous pancreas–kidney transplantation (SPKT) is a 
consolidated therapeutic option for patients with diabetes 
mellitus and end-stage renal disease (ESRD) who are eligible 
for pancreas transplantation [1–3]. By replacing both organs 
simultaneously, SPKT provides restoration of renal function 
together with endogenous insulin secretion, offering the 
potential for insulin independence and durable metabolic 
control [4–7]. Kidney transplantation alone (KTA) remains 
the most common approach worldwide due to its broader 
applicability, lower surgical complexity, and higher availability 
of organs, but it does not address the underlying diabetes or its 
long-term complications [8]. The theoretical advantages of 
SPKT extend beyond kidney graft survival and patient 
longevity [9]. Normalization of glycaemic control after 
successful pancreas transplantation improves HbA1c and 
reduces glycaemic variability, thereby decreasing the risk of 
acute metabolic decompensation and potentially preventing or 
slowing the progression of microvascular and macrovascular 
complications of diabetes [10–15]. Several observational studies 
have suggested that SPKT recipients achieve superior metabolic 
outcomes and quality of life compared with patients undergoing 
KTA, who remain insulin-dependent and often face suboptimal 
glucose control despite advances in medical therapy [16]. 
Despite these potential benefits, the impact of SPKT on hard 
clinical outcomes has been debated. Some registry-based 
analyses and single-centre reports have described lower 

mortality and cardiovascular events among SPKT recipients 
[17–22], particularly in type 1 diabetes [23, 24], while others 
have failed to confirm a survival advantage once differences in 
baseline risk profiles are accounted for [25–30]. Moreover, SPKT 
carries higher perioperative morbidity, increased 
immunosuppression, and greater risk of early complications, 
raising concerns about the overall balance of risks and benefits 
[31–33]. In the recent era, with improvements in surgical 
techniques [34–36], perioperative care [37–40], 
immunosuppressive strategies [41–43], and diabetes 
management [44], it remains unclear whether the historical 
advantages of SPKT over KTA persist in real-world practice. 
Importantly, while survival and graft outcomes are critical 
endpoints, the ability of SPKT to provide superior long-term 
glycaemic control represents a distinctive and clinically 
meaningful outcome that may translate into downstream 
benefits for patients. Large-scale real-world data may help 
clarify these uncertainties. TriNetX, a federated network of 
healthcare organizations, aggregates longitudinal electronic 
health records and enables comparative effectiveness research 
across diverse populations with robust analytic tools, including 
propensity score methods to mitigate baseline imbalances [45]. 
The objective of this study was to compare long-term outcomes 
of SPKT versus KTA in patients with diabetes and ESRD using 
the TriNetX Global Collaborative Network. We evaluated 
survival, kidney and pancreas graft outcomes, cardiovascular 
events, diabetes-related acute and chronic complications, 
malignancies, and mental health, with a particular focus on 
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whether the improved glycaemic control achieved by SPKT 
translates into clinical benefit in the new era of transplantation.

MATERIALS AND METHODS

Data Source and Ethics
We performed a retrospective cohort study using the TriNetX 
Global Collaborative Network (2010–2024, access date 
23 September 2025), which aggregates de-identified EHR data 
from >150 healthcare organizations worldwide. The network 
provides demographics, diagnoses, procedures, laboratory 
values, medications, and vitals. Data are de-identified per 
HIPAA and GDPR; institutional review board approval and 
informed consent were not required for analyses of de- 
identified data.

Study Population
Adults aged 18–59 years with diabetes and end-stage renal disease 
who underwent either simultaneous pancreas–kidney 
transplantation (SPKT) or kidney transplantation alone (KTA) 
were identified by transplant procedure codes. Exclusions: 
paediatric (<18 years) or older adults (>59 years), living-donor 
or multi-organ transplants, and records lacking a valid index date. 
The unmatched cohorts comprised 3,679 SPKT and 27,062 KTA 
recipients.

Exposure, Index Event and Follow-Up
The exposure was transplant type (SPKT vs. KTA). The index 
event was the date of transplantation. For survival analyses 
(Kaplan–Meier and Cox regression), outcomes were assessed 
from 90 days post-transplant. For fixed-timepoint estimates, 1- 
year outcomes were calculated including events from day 10 post- 
transplant, while 5- and 10-year outcomes were calculated 
including events from day 90 onwards.

Outcomes
Primary outcomes were (i) all-cause mortality, (ii) kidney graft 
failure, and (iii) death-censored graft failure. Secondary outcomes 
included: major adverse kidney events (MAKE: dialysis 
dependence, eGFR <15 mL/min/1.73 m2, transplant 
complications, or graft failure), transplant-related complications 
(ICD-10 T86.x), cardiovascular events (composite and 
components: acute myocardial infarction, stroke, heart failure, 
cardiac arrest, revascularization), infections/sepsis, treated acute 
rejection, 1-year hospital readmission, metabolic complications 
(hypoglycaemia; ketoacidosis/hyperosmolarity), microvascular 
complications (new-onset neuropathy; retinopathy), mental 
health (post-transplant depression/anxiety), and oncologic 
outcomes (PTLD/other neoplasms). Laboratory endpoints were 
most recent HbA1c and eGFR.

Detailed definitions of all outcomes, including the exact ICD- 
10 and procedure code lists used to define exposures, 
comorbidities and endpoints (e.g., cardiovascular events, 
rejection, infection, neuropathy), are provided in the 
Supplementary Methods. These definitions were pre-specified 
before any outcome analyses.

Statistical Analysis
Comparative analyses between cohorts were performed using risk 
difference, risk ratio, and odds ratio with 95% confidence 
intervals, as well as Kaplan–Meier curves with log-rank tests 
and Cox proportional hazards regression. Propensity score 
matching (1:1 nearest-neighbour with caliper 0.1) was applied 
to balance baseline demographic, clinical, and laboratory 
covariates. For all Cox models we assessed the proportional 
hazards assumption visually and using Schoenfeld residuals; 
no major violations were detected. Further details on cohort 
definitions, index event and time windows, analytic settings, 
outcome definitions (including ICD, CPT, and laboratory 
codes), and propensity score methodology are reported in the 
Supplementary Methods.

RESULT

Baseline Characteristics
A total of 3,679 SPKT and 27,062 KTA recipients were identified. 
Before matching, SPKT recipients were younger, more often type 
1 diabetic, and carried fewer cardiovascular comorbidities, 
whereas KTA recipients were more frequently of Black or 
Hispanic ethnicity and more commonly had ischemic heart 
disease, heart failure, dyslipidaemia, and obesity 
(Supplementary Table S1). After 1:1 propensity score 
matching, well-balanced pairs were generated with excellent 
covariate balance (all SMD <0.1; Supplementary Table S1; 
Supplementary Figures S1–S2). Median follow-up was 
~6 years in both groups. At the most recent assessment, 
HbA1c values were lower in SPKT compared with KTA 
recipients, both before matching (6.23% ± 1.68% vs. 7.11% ± 
1.77%; p < 0.0001) and after matching (6.23% ± 1.68% vs. 6.58% ± 
1.78%; p < 0.0001), although the difference was attenuated after 
adjustment. A similar pattern was seen for kidney function: eGFR 
was higher among SPKT recipients before matching (48.5 ± 
29.3 vs. 44.1 ± 28.8 mL/min/1.73 m2; p < 0.0001), with only a 
modest residual difference after matching (48.5 ± 29.3 vs. 46.7 ± 
29.0 mL/min/1.73 m2; p = 0.013).

Primary Outcomes
In the unmatched cohorts, SPKT recipients experienced 
significantly lower mortality compared with KTA, with 
hazard ratios well below unity and consistently favourable 
risk estimates at both 5 and 10 years (Table 1; 
Supplementary Tables S3–S4). Kaplan–Meier curves 
confirmed superior survival in SPKT (Figure 1). After 
propensity score matching, however, survival probabilities 
became virtually identical, and the risk of death did not 
differ between groups across all time points (Supplementary 
Tables S3–S4). Unadjusted Kaplan–Meier analysis suggested a 
modest advantage for SPKT, with lower cumulative incidence 
of graft loss over time (Table 1; Figure 1). However, risk 
estimates at 5 and 10 years indicated only minimal 
differences between groups, with relative risks close to unity 
(Supplementary Tables S3, S4). After propensity score 
matching, graft outcomes were fully comparable, with no 
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evidence of a significant difference at any time point 
(Supplementary Tables S3, S4). In contrast, death-censored 
analyses showed less favourable outcomes for SPKT. In the 
unmatched population, the risk of death-censored graft failure 
was slightly higher in SPKT, particularly in the early post- 
transplant period, with relative risks favouring KTA 
(Supplementary Tables S3, S4). Kaplan–Meier curves 
showed largely overlapping trajectories (Figure 1). After 
matching, the differences disappeared, with similar risks of 
death-censored graft loss between groups (Table 1; 
Supplementary Tables S3, S4).

Secondary Outcomes
A consistent pattern was observed across early peri-transplant 
endpoints. In the unmatched cohorts, SPKT recipients had 
higher rates of treated acute rejection, kidney 
transplant–related complications, and hospital readmission 
within the first year, all favouring KTA (Supplementary 
Tables S2–S4). After propensity score matching, the excess 
risk of acute rejection was no longer significant, whereas kidney 
transplant complications remained more frequent in SPKT, 
though with reduced effect sizes (Supplementary Tables S3-S4). 

Conversely, major adverse kidney events (MAKE) consistently 
favoured SPKT before adjustment, with hazard ratios and 
relative risks below unity across all time horizons (Table 1; 
Supplementary Tables S2–S4). After propensity score 
matching, however, this advantage was limited to the first 
post-transplant year, with neutral risks thereafter 
(Supplementary Table S2). In the unmatched cohorts, 
SPKT recipients showed lower risks of post-transplant 
cardiovascular events, with the advantage predominantly 
driven by a reduced incidence of heart failure (Table 1; 
Supplementary Tables S3–S4). Myocardial infarction and 
stroke occurred less frequently in SPKT as well, but the 
effect size was smaller. Kaplan–Meier analyses confirmed 
fewer cumulative cardiovascular events in SPKT, largely 
attributable to the divergence in heart failure risk 
(Figure 1). After propensity score matching, however, all 
differences were attenuated, and risks for the composite 
endpoint as well as for myocardial infarction, stroke, and 
heart failure became comparable between SPKT and KTA 
(Supplementary Tables S2–S4). In the unmatched cohorts, 
the profile of diabetes-related events was mixed. Diabetic 
ketoacidosis and hyperosmolar states were more frequent in 

TABLE 1 | Longitudinal outcomes (Kaplan–Meier and Cox models): SPKT vs. KTA.

Outcome Cohort Hazard ratio (95% CI) KM log-rank p Direction

All-cause mortality PS-matched 1.00 (0.91–1.11) 0.97 Neutral
Pre-matching 0.76 (0.71–0.83) <0.001 Favors SPKT

Kidney graft failure PS-matched 0.97 (0.91–1.04) 0.38 Neutral
Pre-matching 0.92 (0.87–0.97) 0.001 Favors SPKT

Death-censored graft failure PS-matched 0.99 (0.92–1.07) 0.79 Neutral
Pre-matching 1.05 (0.99–1.11) 0.11 Neutral

MAKE PS-matched 0.96 (0.91–1.01) 0.10 Neutral
Pre-matching 0.82 (0.79–0.85) <0.001 Favors SPKT

Post-transplant cardiovascular events PS-matched 0.98 (0.91–1.05) 0.55 Neutral
Pre-matching 0.73 (0.69–0.77) <0.001 Favors SPKT

Treated acute rejection PS-matched 1.02 (0.95–1.11) 0.57 Neutral
Pre-matching 1.16 (1.09–1.23) <0.001 Favors KTA

Acute myocardial infarction (first event) PS-matched 1.09 (0.94–1.25) 0.26 Neutral
Pre-matching 0.89 (0.80–0.99) 0.04 Favors SPKT

Heart failure (first event) PS-matched 0.94 (0.84–1.05) 0.25 Neutral
Pre-matching 0.70 (0.64–0.76) <0.001 Favors SPKT

Stroke (first event) PS-matched 1.05 (0.87–1.25) 0.63 Neutral
Pre-matching 0.87 (0.76–1.00) 0.05 Favors SPKT

Infection or sepsis PS-matched 1.00 (0.92–1.08) 0.98 Neutral
Pre-matching 0.87 (0.82–0.93) <0.001 Favors SPKT

Hypoglycaemia PS-matched 1.00 (0.89–1.12) 0.93 Neutral
Pre-matching 0.89 (0.81–0.97) 0.01 Favors SPKT

Ketoacidosis/hyperosmolarity PS-matched 0.95 (0.83–1.09) 0.50 Neutral
Pre-matching 1.20 (1.08–1.33) 0.001 Favors KTA

Depression/Anxiety onset post-Tx PS-matched 0.99 (0.89–1.11) 0.87 Neutral
Pre-matching 1.07 (0.98–1.16) 0.13 Neutral

Diabetic neuropathy (new onset) PS-matched 1.11 (0.99–1.24) 0.06 Neutral
Pre-matching 1.04 (0.96–1.14) 0.31 Neutral

Diabetic retinopathy (new onset) PS-matched 1.06 (0.93–1.20) 0.38 Neutral
Pre-matching 1.11 (1.00–1.22) 0.04 Favors KTA

PTLD/Neoplasm PS-matched 1.01 (0.92–1.11) 0.87 Neutral
Pre-matching 0.95 (0.88–1.01) 0.11 Neutral

Abbreviations. SPKT, simultaneous pancreas–kidney transplant; KTA, kidney transplant alone; KM, Kaplan–Meier; HR, hazard ratio; CI, confidence interval; PS-matched, propensity-score 
matched; MAKE, major adverse kidney events; PTLD, post-transplant lymphoproliferative disorder.
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SPKT, with relative risks favouring KTA (Supplementary 
Tables S3–S4). By contrast, severe hypoglycaemia occurred 
less often in SPKT, indicating a modest advantage for SPKT in 
this acute complication (Supplementary Tables S3–S4). For 
chronic complications, new-onset diabetic neuropathy and 
retinopathy were more frequent in SPKT, with risk estimates 
favouring KTA (Supplementary Tables S3–S4). After 
propensity score matching, however, all these differences 
were attenuated, and risks of acute decompensation, 
hypoglycaemia, neuropathy, and retinopathy became largely 
comparable between groups (Supplementary Tables S2–S4). 
Patterns of infection and sepsis varied according to the time 
horizon. In the unmatched cohorts, Kaplan–Meier estimates 
suggested slightly lower cumulative infection risk in SPKT over 
long-term follow-up (Supplementary Tables S3, S4). In 
contrast, early events within the first year were more 
common in SPKT, favouring KTA. After propensity score 
matching, the survival curves became largely overlapping, 
but the excess of early infections in SPKT persisted, while 
long-term risks converged toward neutrality (Supplementary 
Table S2). The incidence of post-transplant 
lymphoproliferative disease and other neoplasms was 
consistently similar between SPKT and KTA, both before 

and after adjustment (Supplementary Tables S3, S4). As a 
proxy of quality of life, new-onset depression or anxiety was 
slightly less frequent in KTA before matching, but this apparent 
difference was not confirmed after adjustment. In the matched 
cohorts, risks were virtually identical (Neutral; Supplementary 
Tables S2–S4).

Sensitivity Analyses
To assess the robustness of our findings, we repeated all analyses 
in two restricted subgroups: (i) recipients with a primary 
diagnosis of type 1 diabetes (Supplementary Table S5), and 
(ii) type 1 diabetes recipients with a body mass index <30 kg/m2 at 
the time of transplantation (Supplementary Table S6). Across 
both sensitivity analyses, the direction and magnitude of risk 
estimates were consistent with those observed in the overall study 
population.

DISCUSSION

In this large, real-world analysis, SPKT recipients achieved 
consistently better glycaemic control than KTA recipients, as 
reflected by lower HbA1c levels both before and after 

FIGURE 1 | Kaplan–Meier survival curves and hazard ratios for SPKT versus KTA. (A) Kaplan–Meier estimates are shown for patient survival, overall graft survival, 
death-censored graft survival, and cardiovascular outcomes (major adverse cardiovascular events, myocardial infarction, stroke, and heart failure), comparing 
simultaneous pancreas–kidney transplantation (SPKT, purple) and kidney transplant alone (KTA, light blue). Curves are presented for unmatched cohorts (left column) and 
after 1:1 propensity score matching (right column). Follow-up extended up to 10 years. (B) The forest plot summarizes hazard ratios (HR, dots) with 95% confidence 
intervals (bars) for each outcome, calculated at prespecified timepoints (1, 5, and 10 years) in unmatched (red) and matched (blue) populations. HR values <1 indicate 
lower risk with SPKT, whereas HR values >1 indicate lower risk with KTA.
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propensity score matching. Despite this clear metabolic advantage, 
long-term patient survival, kidney graft survival, and 
cardiovascular outcomes were indistinguishable between SPKT 
and KTA once baseline differences were accounted for. The 
initial signals of improved survival and reduced cardiovascular 
risk in the unmatched cohorts were largely attributable to selection 
bias, with SPKT recipients being younger, predominantly affected 
by type 1 diabetes, and carrying fewer comorbidities at baseline. 
Importantly, SPKT was associated with higher early 
risks—including treated acute rejection, hospital readmission, 
perioperative complications, and infection/sepsis within the first 
post-transplant year. These excess short-term risks did not 
translate into inferior long-term outcomes. The only remaining 
clinical difference was a modest reduction in MAKE during the 
first post-transplant year, suggesting a possible short-term 
renoprotective effect of improved glycaemic control, although 
without sustained long-term impact on major endpoints. Our 
findings differ from the earliest registry-based and single-centre 
reports, which consistently suggested a survival and cardiovascular 
advantage of SPKT over KTA [46–49] particularly among younger 
recipients with type 1 diabetes [7, 21, 47, 49–51]. However, they 
align more closely with subsequent analyses that applied more 
comprehensive multivariable adjustment or propensity-based 
methods and reported attenuation or disappearance of these 
differences [25, 52, 53]. This pattern supports the interpretation 
that much of the apparent survival benefit of SPKT in historical 
cohorts may have reflected differences in recipient selection, donor 
quality, and the clinical context of earlier eras.

A notable result from our study is the persistently lower 
HbA1c observed in SPKT recipients after matching, despite the 
relatively small absolute difference (6.2% vs. 6.6%). Based on 
landmark trials such as DCCT/EDIC [54] and UKPDS [54], a 
1% reduction in HbA1c corresponds to a 15%–20% reduction 
in microvascular risk and a 10%–15% reduction in 
cardiovascular events. Accordingly, the 0.3%–0.4% difference 
in our study would be expected to confer only a 4%–6% 
reduction in microvascular risk and a 3%–5% reduction in 
cardiovascular risk—an effect size insufficient to produce 
detectable long-term differences in survival or major 
cardiovascular outcomes in heterogeneous, real-world 
cohorts. This helps explain why improved glycaemic control 
after SPKT, while clinically relevant, did not translate into 
measurable survival advantages at a population level. These 
short-term risks associated with SPKT—including 
perioperative morbidity, treated rejection, infections, and 
early hospital readmissions—are well documented [31, 32, 
36, 55, 56] and represent a recognised trade-off against the 
metabolic benefits. Furthermore, the therapeutic landscape has 
evolved substantially. Advances in continuous glucose 
monitoring, automated insulin delivery systems, and the 
availability of new agents such as SGLT2 inhibitors and 
GLP-1 receptor agonists have markedly improved glycaemic 
profiles and cardiovascular risk in patients with diabetes after 
kidney transplantation. These innovations have likely 
narrowed the incremental advantage of SPKT over KTA, 
further contextualising our findings of long-term similarity 
in hard outcomes.

This finding warrants further clinical interpretation. In SPKT 
recipients, an HbA1c in the low-to-mid 6% range reflects 
physiological insulin secretion, typically associated with minimal 
risk of severe hypoglycaemia and lower glycaemic variability. In 
contrast, similar HbA1c values in insulin-treated KTA recipients 
may mask substantial hypoglycaemia burden, glycaemic 
fluctuations, and the cognitive and emotional load of intensive 
insulin management. Because our dataset did not include 
continuous glucose monitoring metrics—such as time-in-range, 
glucose excursion indices, or asymptomatic hypoglycaemia—the 
true metabolic benefit of SPKT is likely underestimated. These 
considerations reinforce that the metabolic advantage of SPKT 
remains clinically meaningful even in the absence of detectable 
long-term survival differences. Our findings should also be 
interpreted in the context of prior evidence, which for decades 
has consistently shown a survival advantage of SPKT over KTA. 
Several factors likely explain why our real-world findings differ 
from these earlier observations. First, historical cohorts reflect an 
era of higher dialysis mortality and less effective diabetes and 
cardiovascular management. Second, donor and recipient selection 
practices have evolved: SPKT recipients typically receive younger, 
lower-risk organs and enter transplantation earlier in the course of 
diabetic complications, whereas KTA recipients accumulate greater 
comorbidity and longer pre-transplant dialysis exposure. These 
factors likely amplified earlier survival signals. Third, 
improvements in perioperative care, modern 
immunosuppression, and cardiovascular therapy have narrowed 
the survival gap. Finally, because our dataset lacked key transplant- 
specific variables—such as donor quality indices, HLA matching, 
cold ischaemia time, and immunosuppression—an intrinsic 
survival benefit of SPKT cannot be excluded and may be 
masked by unmeasured confounding. Together, these 
considerations reconcile our findings with the broader literature 
and suggest that, in current practice, the dominant advantage of 
SPKT lies in its metabolic and quality-of-life benefits rather than in 
large differences in long-term survival.

This study has several important limitations First, despite 
rigorous propensity score matching, residual confounding is 
unavoidable because the TriNetX platform lacks key 
transplant-specific variables. Donor quality metrics such as 
Kidney Donor Profile Index (KDPI) and Pancreas Donor Risk 
Index (PDRI), which strongly influence kidney outcomes and 
differ systematically between SPKT and KTA, were not available. 
Similarly, no information was provided on HLA matching, panel 
reactive antibodies, donor-specific antibodies, cold ischaemia 
time, centre experience or detailed immunosuppression 
protocols. These unmeasured factors may attenuate or obscure 
a true intrinsic survival benefit of SPKT or, conversely, magnify 
early procedural risk. Second, exposures, comorbidities and 
outcomes were identified using ICD-10 and procedure codes. 
The complete lists of codes used in this study are provided in the 
Supplementary Methods. Although these coding-based 
definitions follow established conventions, they remain prone 
to misclassification, under-reporting and variability across 
institutions—particularly for complex outcomes such as 
cardiovascular events, rejection, infection or neuropathy, for 
which clinical adjudication would be preferable. Third, the 
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database does not capture patient-reported outcomes, continuous 
glucose monitoring metrics or hypoglycaemia burden—elements 
that represent the most meaningful clinical benefits of SPKT for 
many patients [57, 58]. As a result, the metabolic advantage 
observed in this study likely underestimates the full quality-of-life 
impact of successful pancreas transplantation [59, 60]. Fourth, 
diabetes type was defined using diagnosis codes, which may 
misclassify insulin-treated type 2 diabetes as type 1. Although 
sensitivity analyses restricted to patients coded as type 1 diabetes 
and to non-obese recipients were performed, some residual 
misclassification may persist. Finally, because SPKT by 
definition requires a deceased donor, our comparison group 
included only deceased-donor KTA recipients. These findings 
cannot be extrapolated to living-donor kidney transplantation, 
which often provides superior survival and represents a distinct 
clinical pathway.

Taken together, these limitations suggest that while our 
findings demonstrate no detectable long-term survival 
advantage of SPKT after adjustment for measured variables, a 
modest true benefit cannot be excluded. Rather, our results 
underscore the extent to which survival outcomes are shaped 
by patient selection, donor quality, and centre-level variation. In 
this context, the principal justification for SPKT in contemporary 
practice lies in its profound metabolic and quality-of-life benefits, 
balanced against higher early procedural risks.

In summary, this large, contemporary real-world analysis 
shows that the apparent survival advantage of SPKT over KTA 
disappears after balancing for measurable clinical covariates. 
Because donor quality and other key transplant-specific factors 
were not captured, a residual survival benefit cannot be excluded. 
Nevertheless, SPKT provides durable metabolic benefits, 
including excellent glycaemic control and freedom from 
insulin. In the setting of comparable observed survival, 
decisions about SPKT should be individualised, considering 
each patient’s preference for insulin independence, glycaemic 
stability, and quality-of-life improvement, as well as willingness 
to accept higher short-term risks. These findings also highlight a 
broader issue: despite clear metabolic and quality-of-life benefits, 
SPKT remains underutilised, and many eligible patients are not 
systematically referred to transplant centres. Variability in 
referral pathways, limited awareness among non-transplant 
clinicians, and the absence of structured evaluation 
frameworks likely prevent equitable access. In light of our 
results—showing that the decision for SPKT increasingly 
centres on metabolic benefit and patient preference—timely 
and systematic referral becomes critical. Strengthening referral 
pathways and enhancing collaboration between diabetologists, 
nephrologists, and transplant teams will be essential to ensure 
that all suitable candidates are appropriately evaluated.
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SUPPLEMENTARY FIGURE S2 | Distribution of propensity scores, follow-up time, 
HbA1c, and eGFR before and after matching. The figure displays cumulative 
distribution curves of propensity scores (top panels), histograms of follow-up time 

(middle panels), and histograms of last available laboratory values for HbA1c (bottom 
left) and eGFR (bottom right) in SPKT and KTA recipients, shown separately for 
unmatched and propensity score–matched cohorts.
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