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In an era marked by global conflict, polarization, and societal fragmentation, the Nobel Committee
has chosen to honor three scientists (Figure 1) for their discovery of key cellular players involved in
Immune Tolerance and homeostatic regulation. In their 1960 Nobel Lecture, Medawar and Burnet
defined immune tolerance as “a state of indifference or non-reactivity towards a substance that would
normally be expected to excite an immunological response”, a definition that remains largely
unchanged today (Glossary).

The laureates’ seminal work led to the discovery and characterization of regulatory CD4" FOXP3™
T cells (Tregs), now widely recognized as central orchestrators of peripheral immune tolerance,
alongside other innate and adaptive immune cells. This breakthrough has laid the foundation for
innovative therapeutic strategies across a broad range of clinical applications.

THE FIRST “GIANT” STEPS FORWARD

Shimon Sakaguchi was the first to provide decisive and widely accepted insights into these cells in
1995, turning the page on the previously ill-defined and controversial “suppressive T cells” of the
1980s. His seminal publication identified the constitutive expression of the high-affinity interleukin-
2 receptor as a major phenotypic marker of regulatory T cells Tregs [1]. He also demonstrated their
capacity to prevent autoimmunity in a mouse model [1].

In 2001, Mary Brunkow and Fred Ramsdell established a critical link between the human IPEX
syndrome (Immune dysregulation, Polyendocrinopathy, Enteropathy, X-linked) and the murine Scurfy
phenotype, both marked by severe autoimmune manifestations. They identified a shared genetic origin:
mutations in the FOXP3 gene located on the X chromosome [2, 3]. The emergence of FOXP3 as a master
regulator of immune tolerance immediately raised compelling questions about its role in Tregs.

In 2003, Shimon Sakaguchi, Fred Ramsdell, and Alexander Rudensky independently, and almost
simultaneously, published landmark studies demonstrating the essential role of FOXP3 in defining
the identity and function of regulatory T cells [4-6].

This discovery marked the beginning of a remarkable surge of interest in these cells (Figure 2), a
trend further accelerated by the development of novel molecular tools and the emergence of murine
models enabling selective gene expression or deletion in Tregs. Tregs originate from two distinct
developmental pathways, depending on the ontogenetic timing of their commitment to the
regulatory lineage: either thymic-derived (tTregs) or peripherally induced (pTregs) [7-9]. The
former possess a highly self-reactive T cell receptor repertoire and primarily function to maintain
self-tolerance and prevent autoimmunity. In contrast, pTregs differentiate in response to exogenous
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FIGURE 1| The Three Laureates of the 2025 Nobel Prize in Physiology or Medicine Dr. Brunkow, PhD, an American molecular biologist, currently holds the position
of Senior Program Manager at the Institute for Systems Biology (ISB) in Seattle. Her Nobel-winning work was carried out at Celltech in Bothell, Washington. Dr. Ramsdell,
PhD, an American immunologist, is the Chief Scientific Officer at Sonoma Biotherapeutics in San Francisco. His award-winning research also took place at Celltech in
Bothell. Dr. Sakaguchi, MD, PhD, a Japanese immunologist, serves as a Distinguished Professor at Osaka University. His honored contributions were made at the

Shimon Sakaguchi
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1 Sakaguchi S et al. J Immunol 1995
2 Wildin RS et al. Nat Genet 2001

3 Brunkow ME et al. Nat Genet 2001
4 Hori S et al. Science 2003

5 KhattriR et al. Nat Immunol 2003

@ Treg & Transplantation

1 Lee MK et al.J Immunol 2004

2 Nadig SN et al. Nature Medicine 2010
3 Sagoo P et al. Sci Transl Med 2011

4 Todo S et al. Hepatology 2016

5 Sawitzki B et al. Lancet 2020
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FIGURE 2 | Annual number of all articles published on Tregs, across all fields (blue) and specifically focused on transplantation (green), from 1990 to 2024. The five
seminal papers by the three Nobel Prize laureates are numbered in blue along the chronological timeline, while five landmark studies in the field of transplantation are
highlighted in green. Bibliographic data were extracted from the Web of Science platform (Clarivate Analytics) using the keywords [FOXP3] or [REGULATORY T CELL] for
all fields, and [FOXP3] or [REGULATORY T CELL] combined with [TRANSPLANTATION] for articles specifically focused on Tregs in transplantation.
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antigens within peripheral tissues, particularly in environments
enriched in TGF-p. Notably, pTregs are key regulators of immune
responses at mucosal interfaces, where they suppress immune
reactions to dietary antigens and commensal microbiota [7, 8].
They also play a crucial role in preventing maternal immune
responses against paternal antigens expressed by the fetus [10].

In this context, the evolutionary conservation of a specific
regulatory element within the FOXP3 gene among eutherian
(placental) mammals, but not in marsupials or oviparous
mammals, underscores the essential role of pTregs in

mammalian evolution, ensuring maternal tolerance necessary
for successful gestation and complete fetal development [10].

TREGS ARE UBIQUITOUS IN HUMAN
IMMUNOPATHOLOGY

Human Treg subpopulations were first well characterized in a
landmark paper by Makoto Miyara in Sakaguchi’s laboratory
[11]. Over the past two decades, dysregulated human regulatory
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T cell (Treg) function, whether excessive or insufficient, has been
implicated across the full spectrum of
immunopathology (Figure 3).

Beyond the extreme case of IPEX syndrome, Treg deficiency
has been identified in various autoimmune diseases [15]. Shimon
Sakaguchi’s group demonstrated that single nucleotide
polymorphisms linked to common autoimmune disorders are
predominantly located in demethylated regions specific to naive
Tregs [16]. These regions shape the unique transcriptomic and
epigenetic identity of Tregs, suggesting that impaired
development or function of natural Tregs is a major driver of
autoimmunity [16].

During healthy pregnancy, the Treg population expands
alongside increased bioavailability of interleukin-2 (IL-2), a
cytokine essential for Treg homeostasis [17]. A collapse in IL-
2 signaling at the end of gestation coincides with the emergence of
an inflammatory signature associated with parturition [17]. A
recent study identified a subset of highly suppressive, activated
CCR8-expressing Tregs at the decidual interface during the first
trimester [18]. This population is reduced in recurrent pregnancy
loss in humans and in murine models of spontaneous abortion. In
mice, selective depletion of CCR8" decidual Tregs precipitates
fetal loss, while their adoptive transfer protects against
spontaneous abortion [18].

In the context of organ transplantation, Tregs play a pivotal
role in suppressing alloimmune responses [19]. Their
involvement in maintaining and propagating transplant
tolerance has been well demonstrated in experimental models,
offering a cellular basis for the phenomenon of Infectious
Tolerance (Glossary) [12, 13]. In humanized mouse models,
human Tregs can suppress both acute and chronic rejection,
with enhanced efficacy when enriched for donor antigen-
specificity [20, 21]. In clinical transplantation, the expansion
and/or graft infiltration of Tregs in patients who achieve

operational tolerance, either spontaneously or through
therapeutic intervention [22], highlights their potential to
reduce the need for long-term immunosuppression.

One of the earliest insights into the role of Tregs in anti-
infectious immunity came from Shohei Hori, a key contributor to
Sakaguchi’s seminal 2003 study [4]. Hori demonstrated that
Tregs play a crucial role in modulating the clinical
manifestation of pneumocystis pneumonia by limiting
inflammation [23]. In their absence, the infection took on a
highly inflammatory and lethal course. Similarly, Rudensky’s
group identified amphiregulin-expressing Tregs involved in
tissue repair; their impairment led to severe lung damage
during influenza infection [24]. These findings support the
concept of Disease Tolerance (see Glossary), where the host
aims to both control the pathogen and minimize immune-
mediated tissue damage [14]. Conversely, in chronic infections
Tregs can be detrimental by impairing pathogen clearance [25].

Finally, a population of highly suppressive, activated CCR8"
Tregs, similar to those found in the decidua, accumulate at tumor
sites and contribute to the creation of an immune-privileged
environment that enables cancer immune evasion [26]. Shimon
Sakaguchi has shown that targeted depletion of CCR4+ Tregs or
CCR8" Tregs can restore a robust, memory-driven anti-tumor
immune response [27, 28].

TOWARD TARGETED THERAPIES

The field of oncology has embraced targeted therapies against
intratumoral Tregs. The 2018 Nobel Prize in Physiology or
Medicine was awarded to James Allison and Tasuku Honjo for
their discoveries of the immune checkpoints CTLA-4 and PD-1,
which laid the foundation for revolutionary cancer
immunotherapies. While PD-1 inhibitors primarily target
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intratumoral CD8" T cells, CTLA-4 blockade mainly disrupts
Treg suppressive mechanisms [29]. In this regard, anti-CTLA-
4 antibodies represent the first Treg-targeted immunotherapies.
Another strategy involves depleting Tregs using anti-CCR4
antibodies, such as mogamulizumab, currently used to treat
cutaneous lymphomas. Even more promising are anti-CCR8
therapies, with the potential to transform cancer
immunotherapy [30].

Conversely, several academic and industrial research groups are
developing novel therapeutic strategies to induce stable,
suppressive Tregs from conventional T cells. Until recently,
culturing T cells with TGF- and IL-2 yielded only transient
FOXP3 expression, resulting in an unstable regulatory
phenotype. In this context, Shimon Sakaguchi’s laboratory
recently demonstrated the conversion of antigen-specific
conventional T cells into stable, suppressive Tregs both in vitro
and in vivo (in mice), either by inhibiting cyclin-dependent kinases
8 and 19 or abrogating CD28 signaling [31, 32]. Other teams are
exploring chromatin-modifying agents to establish the epigenetic
landscape characteristic of bona fide Tregs, essential for
maintaining regulatory identity [33]. The therapeutic potential
of this emerging class of immunomodulators is highly promising.

IL-2-based therapies exploit the high-affinity IL-2 receptor
expression characteristic of Tregs, resulting in heightened
sensitivity to low-dose IL-2 [34]. While low-dose IL-2 has
shown clinical benefit in treating chronic graft-versus-host
disease [35], it has also led to graft rejection in kidney
(NCT02417870) and liver transplant [36] recipients due to
limited specificity for Tregs. This narrow therapeutic window
has spurred interest in IL-2 muteins: genetically engineered IL-2
variants designed to selectively activate Tregs [34, 37]. These
modified cytokines are being developed primarily for
autoimmune diseases, though they also hold promise for solid
organ transplantation [34].

Regulatory cell therapy is attracting growing interest in
treating autoimmune diseases, hematopoietic stem cell
transplantation (HSCT), and solid organ transplantation. The
Orca-T cell product, which includes donor-derived Tregs, has
achieved breakthrough results in phase 2 [38] and subsequent
phase 3 (NCTO05316701) clinical trials, demonstrating a
significantly lower incidence of moderate-to-severe chronic
GVHD at 1 year among patients undergoing allogeneic HSCT.
Orca-T is poised to become the first FDA-approved Treg-based
cell therapy. In kidney transplantation, results from the ONE
Study demonstrated the feasibility and safety of an autologous,
polyclonal Treg therapy in kidney transplant recipients [39]. The
findings suggest potential benefits, including reduced
immunosuppressive requirements and a lower incidence of
opportunistic infections [39]. In liver transplantation, a
Japanese study showed that immunosuppressive drugs could
be successfully discontinued following post-transplant
cyclophosphamide pulses and donor-specific Treg therapy,
with sustained results over long-term follow-up [40, 41].

Genetic enhancement of Tregs represents a promising strategy
to potentiate regulatory cell therapy [42]. For example, Tregs can
be redirected to the graft by engineering them to express a
chimeric antigen receptor (CAR) specific for a donor-derived
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antigen, such as HLA-A2 [43]. Two clinical trials investigating
HLA-A2-specific CAR-Tregs are currently underway in kidney
(STEADFAST, NCT04817774) and liver (LIBERATE,
NCT05234190) transplantation. Additionally, Tregs can be
rendered resistant to tacrolimus through targeted deletion of
the FKBP12 gene, preserving their function and proliferation
in patients under immunosuppressive therapy [44]. Lastly,
transgenic expression of an IL-2 mutein can enhance Treg
expansion and suppressive capacity [45].

In summary, 30 years after the foundational work that shaped
our modern understanding of regulatory T cells, their medical
implications have proven profound, especially in organ
transplantation. We extend our warmest thanks to the three
laureates for their groundbreaking contributions and
congratulate them on this well-deserved recognition.
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APPENDIX

peripheral tolerance, which takes place primarily in lymph

nodes and other tissues.

Please see the glossary for definition. 2- Infectious tolerance refers to the capacity of bona fide Tregs
Glossary: to convert effector cells into new Tregs, thereby extending

immune tolerance from one antigen to another. This

1- Immune tolerance refers to the immune system’s ability to mechanism supports the ongoing induction of tolerance

remain unresponsive to molecules, cells, or tissues that
would otherwise trigger a response. It involves various
mechanisms that help distinguish between self and non-
self, while also preventing excessive or inappropriate
reactions to environmental factors such as dietary
antigens and gut microbiota. Depending on where it is
induced, immune tolerance is classified as either central
tolerance, which occurs in the thymus and bone marrow, or

in new cohorts of T cells over the lifespan of a tolerated
graft. The concept was first introduced by Hermann
Waldmann in 1993 [12], and was later linked to
regulatory T cells in 2011 [13].

3- Disease tolerance refers to a paradigm proposed by Ruslan

Medzhitov, in which an important defense strategy against
infection involves mitigating bystander tissue injury caused
by pathogen-specific immune responses [14].

Transplant International | Published by Frontiers

November 2025 | Volume 38 | Article 15767



	The 2025 Nobel Prize in Physiology or Medicine Honors the Immune Peacekeepers
	The First “Giant” Steps Forward
	Tregs are Ubiquitous in Human Immunopathology
	Toward Targeted Therapies
	Data Availability Statement
	Author Contributions
	Author ContributionsAll authors listed have made a substantial, direct, and intellectual contribution to the work and appro ...
	Conflict of Interest
	Generative AI Statement
	Acknowledgements
	References
	Appendix


